1
|
Mavropalias G, Boppart M, Usher KM, Grounds MD, Nosaka K, Blazevich AJ. Exercise builds the scaffold of life: muscle extracellular matrix biomarker responses to physical activity, inactivity, and aging. Biol Rev Camb Philos Soc 2023; 98:481-519. [PMID: 36412213 DOI: 10.1111/brv.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscle extracellular matrix (ECM) is critical for muscle force production and the regulation of important physiological processes during growth, regeneration, and remodelling. ECM remodelling is a tightly orchestrated process, sensitive to multi-directional tensile and compressive stresses and damaging stimuli, and its assessment can convey important information on rehabilitation effectiveness, injury, and disease. Despite its profound importance, ECM biomarkers are underused in studies examining the effects of exercise, disuse, or aging on muscle function, growth, and structure. This review examines patterns of short- and long-term changes in the synthesis and concentrations of ECM markers in biofluids and tissues, which may be useful for describing the time course of ECM remodelling following physical activity and disuse. Forces imposed on the ECM during physical activity critically affect cell signalling while disuse causes non-optimal adaptations, including connective tissue proliferation. The goal of this review is to inform researchers, and rehabilitation, medical, and exercise practitioners better about the role of ECM biomarkers in research and clinical environments to accelerate the development of targeted physical activity treatments, improve ECM status assessment, and enhance function in aging, injury, and disease.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, and Centre for Healthy Aging, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Discipline of Exercise Science, Murdoch University, Murdoch, WA, 6150, Australia
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 1206 South Fourth St, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, 405 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Kayley M Usher
- School of Biomedical Sciences, University of Western Australia (M504), 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Miranda D Grounds
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
2
|
Csapo R, Gumpenberger M, Wessner B. Skeletal Muscle Extracellular Matrix - What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review. Front Physiol 2020; 11:253. [PMID: 32265741 PMCID: PMC7096581 DOI: 10.3389/fphys.2020.00253] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle represents the largest body-composition component in humans. In addition to its primary function in the maintenance of upright posture and the production of movement, it also plays important roles in many other physiological processes, including thermogenesis, metabolism and the secretion of peptides for communication with other tissues. Research attempting to unveil these processes has traditionally focused on muscle fibers, i.e., the contractile muscle cells. However, it is a frequently overlooked fact that muscle fibers reside in a three-dimensional scaffolding that consists of various collagens, glycoproteins, proteoglycans, and elastin, and is commonly referred to as extracellular matrix (ECM). While initially believed to be relatively inert, current research reveals the involvement of ECM cells in numerous important physiological processes. In interaction with other cells, such as fibroblasts or cells of the immune system, the ECM regulates muscle development, growth and repair and is essential for effective muscle contraction and force transmission. Since muscle ECM is highly malleable, its texture and, consequently, physiological roles may be affected by physical training and disuse, aging or various diseases, such as diabetes. With the aim to stimulate increased efforts to study this still poorly understood tissue, this narrative review summarizes the current body of knowledge on (i) the composition and structure of the ECM, (ii) molecular pathways involved in ECM remodeling, (iii) the physiological roles of muscle ECM, (iv) dysregulations of ECM with aging and disease as well as (v) the adaptations of muscle ECM to training and disuse.
Collapse
Affiliation(s)
- Robert Csapo
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Institute for Sports Medicine, Alpine Medicine & Health Tourism, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Matthias Gumpenberger
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Institute for Sports Medicine, Alpine Medicine & Health Tourism, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - Barbara Wessner
- Department of Sports Medicine, Exercise Physiology and Prevention, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Wu XT, Xiao W, Cao RY, Yang X, Pan F, Sun LW, Fan YB. Spontaneous cellular vibratory motions of osteocytes are regulated by ATP and spectrin network. Bone 2019; 128:112056. [PMID: 31376534 DOI: 10.1016/j.bone.2019.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 01/23/2023]
Abstract
Vibration at high frequency has been demonstrated to be anabolic for bone and embedded osteocytes. The response of osteocytes to vibration is frequency-dependent, but the mechanism remains unclear. Our previous computational study using an osteocyte finite element model has predicted a resonance effect involving in the frequency-dependent response of osteocytes to vibration. However, the cellular spontaneous vibratory motion of osteocytes has not been confirmed. In the present study, the cellular vibratory motions (CVM) of osteocytes were recorded by a custom-built digital holographic microscopy and quantitatively analyzed. The roles of ATP and spectrin network in the CVM of osteocytes were studied. Results showed the MLO-Y4 osteocytes displayed dynamic vibratory motions with an amplitude of ~80 nm, which is relied both on the ATP content and spectrin network. Spectrum analysis showed several frequency peaks in CVM of MLO-Y4 osteocytes at 30 Hz, 39 Hz, 83 Hz and 89 Hz. These peak frequencies are close to the commonly used effective frequencies in animal training and in-vitro cell experiments, and show a correlation with the computational predictions of the osteocyte finite element model. These results implicate that osteocytes are dynamic and the cellular dynamic motion is involved in the cellular mechanotransduction of vibration.
Collapse
Affiliation(s)
- Xin-Tong Wu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China
| | - Wen Xiao
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China
| | - Run-Yu Cao
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China
| | - Xiao Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Feng Pan
- Key Laboratory of Precision Opto-mechatronics Technology, School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China
| | - Lian-Wen Sun
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yu-Bo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| |
Collapse
|
4
|
Tahimic CGT, Paul AM, Schreurs AS, Torres SM, Rubinstein L, Steczina S, Lowe M, Bhattacharya S, Alwood JS, Ronca AE, Globus RK. Influence of Social Isolation During Prolonged Simulated Weightlessness by Hindlimb Unloading. Front Physiol 2019; 10:1147. [PMID: 31572207 PMCID: PMC6753329 DOI: 10.3389/fphys.2019.01147] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
The hindlimb unloading (HU) model has been used extensively to simulate the cephalad fluid shift and musculoskeletal disuse observed in spaceflight with its application expanding to study immune, cardiovascular and central nervous system responses, among others. Most HU studies are performed with singly housed animals, although social isolation also can substantially impact behavior and physiology, and therefore may confound HU experimental results. Other HU variants that allow for paired housing have been developed although no systematic assessment has been made to understand the effects of social isolation on HU outcomes. Hence, we aimed to determine the contribution of social isolation to tissue responses to HU. To accomplish this, we developed a refinement to the traditional NASA Ames single housing HU system to accommodate social housing in pairs, retaining desirable features of the original design. We conducted a 30-day HU experiment with adult, female mice that were either singly or socially housed. HU animals in both single and social housing displayed expected musculoskeletal deficits versus housing matched, normally loaded (NL) controls. However, select immune and hypothalamic-pituitary-adrenal (HPA) axis responses were differentially impacted by the HU social environment relative to matched NL controls. HU led to a reduction in % CD4+ T cells in singly housed, but not in socially housed mice. Unexpectedly, HU increased adrenal gland mass in socially housed but not singly housed mice, while social isolation increased adrenal gland mass in NL controls. HU also led to elevated plasma corticosterone levels at day 30 in both singly and socially housed mice. Thus, musculoskeletal responses to simulated weightlessness are similar regardless of social environment with a few differences in adrenal and immune responses. Our findings show that combined stressors can mask, not only exacerbate, select responses to HU. These findings further expand the utility of the HU model for studying possible combined effects of spaceflight stressors.
Collapse
Affiliation(s)
- Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,KBR, Houston, TX, United States
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Universities Space Research Association, Columbia, MD, United States
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,KBR, Houston, TX, United States
| | - Samantha M Torres
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Universities Space Research Association, Columbia, MD, United States
| | - Sonette Steczina
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States.,Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
5
|
Usuki F, Fujimura M, Nakamura A, Nakano J, Okita M, Higuchi I. Local Vibration Stimuli Induce Mechanical Stress-Induced Factors and Facilitate Recovery From Immobilization-Induced Oxidative Myofiber Atrophy in Rats. Front Physiol 2019; 10:759. [PMID: 31281262 PMCID: PMC6595229 DOI: 10.3389/fphys.2019.00759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/31/2019] [Indexed: 01/22/2023] Open
Abstract
Muscle atrophy can be caused by unloading stress such as microgravity environments or cast immobilization. Therapies for such disuse muscle atrophy and their underlying mechanisms are incompletely understood. Here, we investigated the therapeutic effects of local vibration stimulation on immobilization-induced skeletal muscle atrophy. A rat model was made by placing the left hindlimb in a cast for 1 week, leading to oxidative myofiber atrophy without myopathic changes in soleus skeletal muscle. Vibration stimulus (90 Hz, 15 min) to the plantar fascia of the atrophic hindlimb was performed once a day using a hand-held vibration massager after removal of a cast at the end of the immobilization period. After 2 weeks, rats were dissected, and quantitative analysis of the cross-sectional areas of soleus myofibers was performed. The results revealed that vibration induced significant recovery from disuse muscle atrophy, compared with untreated immobilized samples. Furthermore, vibration treatment suppressed the fiber transition from slow to fast fiber types compared with vibration-untreated immobilized samples. Western blotting analyses of mechanical stress-induced factors revealed that the expression of mechano-growth factor (MGF), systemic insulin-like growth factor I, and the mechanotransduction protein, Yes-associated protein 1 (YAP1), was decreased in untreated immobilized soleus muscle, whereas vibration stimulation restored their expression. No change in the level of phosphorylation of YAP1Ser127 was observed, leading to no change in p-YAP1/YAP1 ratio in vibration-treated immobilized soleus muscle. The results indicate that vibration stimulus is effective to restore immobilization-induced inactivation of YAP1 pathway. Phosphorylation of ERK 1/2, but not AKT, was enhanced in vibration-treated immobilized soleus muscle. Furthermore, vibration stimuli restored immobilization-induced downregulation of the paired box transcription factor, PAX7, a critical factor for regenerative myogenesis in muscle satellite cells. Our results indicate that cyclic vibration stimuli are effective in activating satellite cells and facilitate recovery from immobilization-induced oxidative myofiber atrophy through upregulation of MGF and YAP1.
Collapse
Affiliation(s)
- Fusako Usuki
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto, Japan
| | - Masatake Fujimura
- Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto, Japan
| | - Atsushi Nakamura
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto, Japan
| | - Jiro Nakano
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minoru Okita
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Itsuro Higuchi
- Department of Physical Therapy, Faculty of Medicine, School of Health Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|