1
|
Wu D, Shu M, Moran EV. Heritability of plastic trait changes in drought‐exposed ponderosa pine seedlings. Ecosphere 2023. [DOI: 10.1002/ecs2.4454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Affiliation(s)
- Dean Wu
- School of Natural Sciences University of California Merced Merced California USA
| | - Mengjun Shu
- School of Natural Sciences University of California Merced Merced California USA
| | - Emily V. Moran
- School of Natural Sciences University of California Merced Merced California USA
| |
Collapse
|
2
|
Zhao C, Chen H, Guo J, Zhou Z. Effects of Fluctuating Thermal Regimes on Life History Parameters and Body Size of Ophraella communa. INSECTS 2022; 13:821. [PMID: 36135522 PMCID: PMC9504774 DOI: 10.3390/insects13090821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The beetle Ophraella communa is an effective biological control agent against the invasive common ragweed spread across various ecosystems with variable temperature ranges. The trend in climate change attributed to fluctuating temperatures and abrupt rainfalls is expected to continue. This study aimed to better understand the effects of thermal fluctuation on O. communa by exposing all their life stages to heat stress under different treatments. Repeated exposure to high temperatures, relative to constant milder temperatures, increased the duration of immature development, mean generation time, and the adult longevity, decreased the intrinsic rate of increase, finite rate of population increase, net reproductive rate, survival rate, overall longevity, body length, and mass of adults and positively affected overall fecundity by prolonging the oviposition period, biasing sex ratio towards females. After exposure to heat stress, the mating success and production of viable offspring were higher in O. communa. Our findings demonstrate that exposure to heat stress negatively affects ragweed beetles, but they were able to survive and reproduce.
Collapse
Affiliation(s)
- Chenchen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongsong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
3
|
González-Tokman D, Bauerfeind SS, Schäfer MA, Walters RJ, Berger D, Blanckenhorn WU. Heritable responses to combined effects of heat stress and ivermectin in the yellow dung fly. CHEMOSPHERE 2022; 286:131030. [PMID: 34144808 DOI: 10.1016/j.chemosphere.2021.131030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
In current times of global change, several sources of stress such as contaminants and high temperatures may act synergistically. The extent to which organisms persist in stressful conditions will depend on the fitness consequences of multiple simultaneously acting stressors and the genetic basis of compensatory genetic responses. Ivermectin is an antiparasitic drug used in livestock that is excreted in dung of treated cattle, causing severe negative consequences on non-target fauna. We evaluated the effect of a combination of heat stress and exposure to ivermectin in the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae). In a first experiment we investigated the effects of high rearing temperature on susceptibility to ivermectin, and in a second experiment we assayed flies from a latitudinal gradient to assess potential effects of local thermal adaptation on ivermectin sensitivity. The combination of heat and ivermectin synergistically reduced offspring survival, revealing severe effects of the two stressors when combined. However, latitudinal populations did not systematically vary in how ivermectin affected offspring survival, body size, development time, cold and heat tolerance. We also found very low narrow-sense heritability of ivermectin sensitivity, suggesting evolutionary constraints for responses to the combination of these stressors beyond immediate maternal or plastic effects. If the revealed patterns hold also for other invertebrates, the combination of increasing climate warming and ivermectin stress may thus have severe consequences for biodiversity. More generally, our study underlines the need for quantitative genetic analyses in understanding wildlife responses to interacting stressors that act synergistically and threat biodiversity.
Collapse
Affiliation(s)
- Daniel González-Tokman
- CONACYT. Red de Ecoetología, Instituto de Ecología A. C. Carretera Antigua a Coatepec 351. El Haya, Xalapa, Veracruz, 91073, Mexico.
| | - Stephanie S Bauerfeind
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Richard J Walters
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Department of Ecology and Genetics, Uppsala University, Sweden, Norbyvägen 18D, S-752 36, Uppsala, Sweden.
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
4
|
Silencing the Myosin Regulatory Light Chain Gene sqh Reduces Cold Hardiness in Ophraella communa LeSage (Coleoptera: Chrysomelidae). INSECTS 2020; 11:insects11120844. [PMID: 33260791 PMCID: PMC7768443 DOI: 10.3390/insects11120844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022]
Abstract
Ambrosia artemisiifolia is a noxious invasive alien weed, that is harmful to the environment and human health. Ophraella communa is a biocontrol agent for A. artemisiifolia, that was accidentally introduced to the Chinese mainland and has now spread throughout southern China. Recently, we found that upon artificial introduction, O. communa can survive in northern China as well. Therefore, it is necessary to study the cold hardiness of O. communa. Many genes have been identified to play a role in cold-tolerance regulation in insects, but the function of the gene encoding non-muscle myosin regulatory light chain (MRLC-sqh) remains unknown. To evaluate the role played by MRLC-sqh in the cold-tolerance response, we cloned and characterized MRLC-sqh from O. communa. Quantitative real-time PCR revealed that MRLC-sqh was expressed at high levels in the gut and pupae of O. communa. The expression of MRLC-sqh was shown to decrease after cold shock between 10 and 0 °C and ascend between 0 and -10 °C, but these did not show a positive association between MRLC-sqh expression and cold stress. Silencing of MRLC-sqh using dsMRLC-sqh increased the chill-coma recovery time of these beetles, suggesting that cold hardiness was reduced in its absence. These results suggest that the cold hardiness of O. communa may be partly regulated by MRLC-sqh. Our findings highlight the importance of motor proteins in mediating the cold response in insects.
Collapse
|
5
|
Alford L, Louâpre P, Mougel F, van Baaren J. Measuring the evolutionary potential of a winter-active parasitic wasp to climate change. Oecologia 2020; 194:41-50. [PMID: 32960336 DOI: 10.1007/s00442-020-04761-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
In temperate climates, as a consequence of warming winters, an increasing number of ectothermic species are remaining active throughout winter months instead of diapausing, rendering them increasingly vulnerable to unpredictable cold events. One species displaying a shift in overwintering strategy is the parasitoid wasp and biological control agent Aphidius avenae. The current study aimed to better understand the consequence of a changing overwintering strategy on the evolutionary potential of an insect population to adapt to the cold stress events, set to increase in frequency, even during milder winters. Using a parental half-sibling breeding design, narrow-sense heritability of the cold tolerance, morphology and longevity of A. avenae was estimated. The heritability of cold tolerance was estimated at 0.07 (CI95% = [0.00; 0.25]) for the Critical Thermal Minima (CTmin) and 0.11 (CI95% = [0.00; 0.34]) for chill coma temperature; estimates much lower than those obtained for morphological traits (tibia length 0.20 (CI95% = [0.03; 0.37]); head width 0.23 (CI95% = [0.09; 0.39]); wing surface area 0.28 (CI95% = [0.11; 0.47])), although comparable with the heritability estimate of 0.12 obtained for longevity (CI95% = [0.00; 0.25]). The heritability estimates obtained thus suggest that A. avenae possesses low adaptive potential against cold stress. If such estimates are indicative of the evolutionary potential of A. avenae cold tolerance, more emphasis may be placed on adaptive phenotypic plasticity at the individual level to persist in a changing climate, with potential implications for the biological control function they provide.
Collapse
Affiliation(s)
- Lucy Alford
- UMR 6553, ECOBIO, Université de Rennes I, Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| | - Philippe Louâpre
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne-Franche-Comté, Dijon, France
| | - Florence Mougel
- Laboratoire Evolution, Génome, Comportement et Ecologie (UMR CNRS-Univ. Paris-Sud-IRD, Univ. Paris-Saclay), 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Joan van Baaren
- UMR 6553, ECOBIO, Université de Rennes I, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| |
Collapse
|
6
|
Zhang Y, Chen J, Chen G, Ma C, Chen H, Gao X, Tian Z, Cui S, Tian Z, Guo J, Wan F, Zhou Z. Identification and Validation of Reference Genes for Quantitative Gene Expression Analysis in Ophraella communa. Front Physiol 2020; 11:355. [PMID: 32457641 PMCID: PMC7220992 DOI: 10.3389/fphys.2020.00355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Ophraella communa is an effective bio-control agent of the invasive common weed. By now, the reference genes in O. communa have not yet been screened and validated. The aim of this study was to screen for the most stable reference genes in different backgrounds, such as different developmental stages, sexes, tissues, and male reproductive system with different body sizes. We selected 12 common housekeeping genes involved in different biological processes, including GAPDH, ACT1, ACT2, ARF1, ARF4, SDH, βTUBC, RPL4, RPL19, RPS18, EF1α, and COX as the candidate reference genes. To analyze the stability of the candidate reference genes, we first used three dedicated algorithms, GeNorm, NormFinder, and BestKeeper, and further comprehensive ranking was provided by ReFinder. The results showed that RPL19 and RPL4 exhibited the least variation in different developmental stages/sexes and in male reproductive systems with different body sizes. COX proved to be most suitable for normalizing the gene expression levels in different tissues, and coincidentally, RPL19 was also found to be second in terms of stability in this study. To the best of our knowledge, this is the first study to identify suitable reference genes for analyzing gene expression in O. communa; thus, this study would lay the foundation for future research on the molecular physiology and biochemistry of O. communa and other insects.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiqiang Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangmei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongsong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuyuan Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhenqi Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaowei Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenya Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|