1
|
Zhu G, Zhang H, Xia M, Liu Y, Li M. EH domain-containing protein 2 (EHD2): Overview, biological function, and therapeutic potential. Cell Biochem Funct 2024; 42:e4016. [PMID: 38613224 DOI: 10.1002/cbf.4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
EH domain-containing protein 2 (EHD2) is a member of the EHD protein family and is mainly located in the plasma membrane, but can also be found in the cytoplasm and endosomes. EHD2 is also a nuclear-cytoplasmic shuttle protein. After entering the cell nuclear, EHD2 acts as a corepressor of transcription to inhibit gene transcription. EHD2 regulates a series of biological processes. As a key regulator of endocytic transport, EHD2 is involved in the formation and maintenance of endosomal tubules and vesicles, which are critical for the intracellular transport of proteins and other substances. The N-terminal of EHD2 is attached to the cell membrane, while its C-terminal binds to the actin-binding protein. After binding, EHD2 connects with the actin cytoskeleton, forming the curvature of the membrane and promoting cell endocytosis. EHD2 is also associated with membrane protein trafficking and receptor signaling, as well as in glucose metabolism and lipid metabolism. In this review, we highlight the recent advances in the function of EHD2 in various cellular processes and its potential implications in human diseases such as cancer and metabolic disease. We also discussed the prospects for the future of EHD2. EHD2 has a broad prospect as a therapeutic target for a variety of diseases. Further research is needed to explore its mechanism, which could pave the way for the development of targeted treatments.
Collapse
Affiliation(s)
- Guoqiang Zhu
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Hu Zhang
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Min Xia
- Hengyang Medical School, Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Hengyang Medical School, Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mingyong Li
- Department of Urology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Wang X, Zhang Z, Zuo W, Wang D, Yang F, Liu Q, Xiao Y. Case Report: Identification of microduplication in the chromosomal 2p16.1p15 region in an infant suffering from pulmonary arterial hypertension. Front Cardiovasc Med 2023; 10:1219480. [PMID: 37937284 PMCID: PMC10626460 DOI: 10.3389/fcvm.2023.1219480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
This study reports the first case of a patient with chromosomal 2p16.1p15 microduplication syndrome complicated by pulmonary arterial hypertension (PAH). A female infant was admitted to the hospital suffering from dyskinesia and developmental delay, and conventional echocardiography revealed an atrial septal defect (ASD), which was not taken seriously or treated at that time. Two years later, preoperative right heart catheterization for ASD closure revealed a mean pulmonary artery pressure (mPAP) of 45 mmHg. The mPAP was reduced, and the condition was stabilized after drug therapy. A genomic copy number duplication (3×) of at least 2.58 Mb in the 2p16.1p15 region on the paternal chromosome was revealed. Multiple Online Mendelian Inheritance in Man (OMIM) genes are involved in this genomic region, such as BCL11A, EHBP1, FAM161A, PEX13, and REL. EHBP1 promotes a molecular phenotypic transformation of pulmonary vascular endothelial cells and is thought to be involved in the rapidly developing PAH of this infant. Collectively, our findings contribute to the knowledge of the genes involved and the clinical manifestations of the 2p16.1p15 microduplication syndrome. Moreover, clinicians should be alert to the possibility of PAH and take early drug intervention when facing patients with 2p16.1p15 microduplications.
Collapse
Affiliation(s)
- Xun Wang
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| | - Zeying Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wanyun Zuo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dan Wang
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| | - Fan Yang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| |
Collapse
|
3
|
Shetti AU, Ramakrishnan A, Romanova L, Li W, Vo K, Volety I, Ratnayake I, Stephen T, Minshall RD, Cologna SM, Lazarov O. Reduced endothelial caveolin-1 underlies deficits in brain insulin signalling in type 2 diabetes. Brain 2023; 146:3014-3028. [PMID: 36731883 PMCID: PMC10316766 DOI: 10.1093/brain/awad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Patients with type 2 diabetes exhibit severe impairments in insulin signalling in the brain and are five times more likely to develop Alzheimer's disease. However, what leads to these impairments is not fully understood. Here, we show reduced expression of endothelial cell caveolin-1 (Cav-1) in the db/db (Leprdb) mouse model of type 2 diabetes. This reduction correlated with alterations in insulin receptor expression and signalling in brain microvessels as well as brain parenchyma. These findings were recapitulated in the brains of endothelial cell-specific Cav-1 knock-out (Tie2Cre; Cav-1fl/fl) mice. Lack of Cav-1 in endothelial cells led to reduced response to insulin as well as reduced insulin uptake. Furthermore, we observed that Cav-1 was necessary for the stabilization of insulin receptors in lipid rafts. Interactome analysis revealed that insulin receptor interacts with Cav-1 and caveolae-associated proteins, insulin-degrading enzyme and the tight junction protein Zonula Occludence-1 in brain endothelial cells. Restoration of Cav-1 in Cav-1 knock-out brain endothelial cells rescued insulin receptor expression and localization. Overall, these results suggest that Cav-1 regulates insulin signalling and uptake by brain endothelial cells by modulating IR-α and IR-β localization and function in lipid rafts. Furthermore, depletion of endothelial cell-specific Cav-1 and the resulting impairment in insulin transport leads to alteration in insulin signalling in the brain parenchyma of type 2 diabetics.
Collapse
Affiliation(s)
- Aashutosh U Shetti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Abhirami Ramakrishnan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Liudmila Romanova
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Wenping Li
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Khanh Vo
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ipsita Volety
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ishara Ratnayake
- Electron Microscopy Core, Research Resource Center, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Terilyn Stephen
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Richard D Minshall
- Department of Pharmacology and Regenerative Medicine, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Anesthesiology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Stephanie M Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Qin S, Predescu DN, Patel M, Drazkowski P, Ganesh B, Predescu SA. Sex differences in the proliferation of pulmonary artery endothelial cells: implications for plexiform arteriopathy. J Cell Sci 2020; 133:133/9/jcs237776. [PMID: 32409569 DOI: 10.1242/jcs.237776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
The sex-biased disease pulmonary arterial hypertension (PAH) is characterized by the proliferation and overgrowth of dysfunctional pulmonary artery endothelial cells (PAECs). During inflammation associated with PAH, granzyme B cleaves intersectin-1 to produce N-terminal (EHITSN) and C-terminal (SH3A-EITSN) protein fragments. In a murine model of PAH, EHITSN triggers plexiform arteriopathy via p38-ELK1-c-Fos signaling. The SH3A-EITSN fragment also influences signaling, having dominant-negative effects on ERK1 and ERK2 (also known as MAPK3 and MAPK1, respectively). Using PAECs engineered to express tagged versions of EHITSN and SH3A-EITSN, we demonstrate that the two ITSN fragments increase both p38-ELK1 activation and the ratio of p38 to ERK1 and ERK2 activity, leading to PAEC proliferation, with female cells being more responsive than male cells. Furthermore, expression of EHITSN substantially upregulates the expression and activity of the long non-coding RNA Xist in female PAECs, which in turn upregulates the X-linked gene ELK1 and represses expression of krüppel-like factor 2 (KLF2). These events are recapitulated by the PAECs of female idiopathic PAH patients, and may account for their proliferative phenotype. Thus, upregulation of Xist could be an important factor in explaining sexual dimorphism in the proliferative response of PAECs and the imbalanced sex ratio of PAH.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Monal Patel
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick Drazkowski
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Balaji Ganesh
- Division of Bioanalytics, Biophysics and Cytomics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Carman BL, Predescu DN, Machado R, Predescu SA. Plexiform Arteriopathy in Rodent Models of Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1133-1144. [PMID: 30926336 DOI: 10.1016/j.ajpath.2019.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022]
Abstract
As time progresses, our understanding of disease pathology is propelled forward by technological advancements. Much of the advancements that aid in understanding disease mechanics are based on animal studies. Unfortunately, animal models often fail to recapitulate the entirety of the human disease. This is especially true with animal models used to study pulmonary arterial hypertension (PAH), a disease with two distinct phases. The first phase is defined by nonspecific medial and adventitial thickening of the pulmonary artery and is commonly reproduced in animal models, including the classic models (ie, hypoxia-induced pulmonary hypertension and monocrotaline lung injury model). However, many animal models, including the classic models, fail to capture the progressive, or second, phase of PAH. This is a stage defined by plexogenic arteriopathy, resulting in obliteration and occlusion of the small- to mid-sized pulmonary vessels. Each of these two phases results in severe pulmonary hypertension that directly leads to right ventricular hypertrophy, decompensated right-sided heart failure, and death. Fortunately, newly developed animal models have begun to address the second, more severe, side of PAH and aid in our ability to develop new therapeutics. Moreover, p38 mitogen-activated protein kinase activation emerges as a central molecular mediator of plexiform lesions in both experimental models and human disease. Therefore, this review will focus on plexiform arteriopathy in experimental animal models of PAH.
Collapse
Affiliation(s)
- Brandon L Carman
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, Rush Medical College, Chicago, Illinois
| | - Dan N Predescu
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, Rush Medical College, Chicago, Illinois
| | - Roberto Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Sanda A Predescu
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, Rush Medical College, Chicago, Illinois.
| |
Collapse
|