1
|
Li Z, Schoonjans E, Allaert J, De Smet S, Kappen M, Houfflyn J, Ottaviani C, De Raedt R, Pulopulos MM, Vanderhasselt MA. Unraveling the temporal interplay of slow-paced breathing and prefrontal transcranial direct current stimulation on cardiac indices of autonomic activity. Psychophysiology 2024; 61:e14650. [PMID: 38997945 DOI: 10.1111/psyp.14650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
The neurovisceral integration model proposes that information flows bidirectionally between the brain and the heart via the vagus nerve, indexed by vagally mediated heart rate variability (vmHRV). Voluntary reduction in breathing rate (slow-paced breathing, SPB, 5.5 Breathing Per Minute (BPM)) can enhance vmHRV. Additionally, prefrontal transcranial direct current stimulation (tDCS) can modulate the excitability of the prefrontal region and influence the vagus nerve. However, research on the combination of SPB and prefrontal tDCS to increase vmHRV and other cardiac (heart rate (HR) and blood pressure) and peripheral (skin conductance) indices is scarce. We hypothesized that the combination of 20 min of SPB and prefrontal tDCS would have a greater effect than each intervention in isolation. Hence, 200 participants were divided into four groups: active tDCS with SPB, active tDCS with 15 BPM breathing, sham tDCS with SPB, and sham tDCS with 15 BPM breathing. Regardless of the tDCS condition, the 5.5 BPM group showed a significant increase in vmHRV over 20 minutes and significant decreases in HR at the first and second 5-min epochs of the intervention. Regardless of breathing condition, the active tDCS group exhibited higher HR at the fourth 5-min epoch of the intervention than the sham tDCS group. No other effects were observed. Overall, SPB is a robust technique for increasing vmHRV, whereas prefrontal tDCS may produce effects that counteract those of SPB. More research is necessary to test whether and how SPB and neuromodulation approaches can be combined to improve cardiac vagal tone.
Collapse
Affiliation(s)
- Zefeng Li
- Department of Head and Skin, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium
| | - Emmanuelle Schoonjans
- Department of Head and Skin, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium
| | - Jens Allaert
- Department of Head and Skin, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Stefanie De Smet
- Department of Head and Skin, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium
| | - Mitchel Kappen
- Department of Head and Skin, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium
| | - Joni Houfflyn
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | | | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Gu Z, Chen W, Lu Q, Dai J, Hu S, Xu K, Geng Y, Zhu Y, Xu B, Dai W, Shen Y. Anodal high-definition transcranial direct current stimulation reduces heart rate and modulates heart-rate variability in healthy young people: A randomized cross-controlled trial. Front Cardiovasc Med 2022; 9:1070157. [PMID: 36531710 PMCID: PMC9755739 DOI: 10.3389/fcvm.2022.1070157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE To investigate whether anodal high-definition transcranial current stimulation (HD-tDCS) over the left dorsolateral pre-frontal cortex (DLPFC) could modulate the heart rate (HR) and heart-rate variability (HRV) in healthy young people. METHODS Forty healthy young people were enrolled in this randomized crossover trial. The participants were randomized to receive anodal HD-tDCS (n = 20) or sham HD-tDCS (n = 20) over the left DLPFC with a washout period of 1 week. Electrocardiogram (ECG) data were continuously recorded 20 min before the stimulation, during the session (20 min), and 20 min after the session. HR and the time- and frequency-domain indices of the HRV were measured to investigate the activity of the sympathetic and parasympathetic nervous systems. RESULTS Anodal HD-tDCS over the left DLPFC induced a significant decrease in HR and a significant increase in the average of normal-to-normal intervals (AVG NN), low-frequency (LF) power, total power (TP), and LF/high-frequency (HF) ratio in comparison with the sham stimulation and the baseline. However, sham HD-tDCS over the left DLPFC had no significant effect on HR or HRV. CONCLUSIONS Anodal HD-tDCS over the left DLPFC could reduce HR and modulate the HRV in healthy young people. HD-tDCS may show some potential for acutely modulating cardiovascular function.
Collapse
Affiliation(s)
- Zhongke Gu
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Wenxiang Chen
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Jiansong Dai
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Shugang Hu
- Department of Rehabilitation, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
| | - Kai Xu
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Yao Geng
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Zhu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Boqing Xu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Dai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Schmaußer M, Hoffmann S, Raab M, Laborde S. The effects of noninvasive brain stimulation on heart rate and heart rate variability: A systematic review and meta-analysis. J Neurosci Res 2022; 100:1664-1694. [PMID: 35582757 DOI: 10.1002/jnr.25062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 12/30/2022]
Abstract
Noninvasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are widely used to test the involvement of specific cortical regions in various domains such as cognition and emotion. Despite the capability of stimulation techniques to test causal directions, this approach has been only sparsely used to examine the cortical regulation of autonomic nervous system (ANS) functions such as heart rate (HR) and heart rate variability (HRV) and to test current models in this regard. In this preregistered (PROSPERO) systematic review and meta-analysis, we aimed to investigate, based on meta-regression, whether NIBS represents an effective method for modulating HR and HRV measures, and to evaluate whether the ANS is modulated by cortical mechanisms affected by NIBS. Here we have adhered to the PRISMA guidelines. In a series of four meta-analyses, a total of 131 effect sizes from 35 sham-controlled trials were analyzed using robust variance estimation random-effects meta-regression technique. NIBS was found to effectively modulate HR and HRV with small to medium effect sizes. Moderator analyses yielded significant differences in effects between stimulation of distinct cortical areas. Our results show that NIBS is a promising tool to investigate the cortical regulation of ANS, which may add to the existing brain imaging and animal study literature. Future research is needed to identify further factors modulating the size of effects. As many of the studies reviewed were found to be at high risk of bias, we recommend that methods to reduce potential risk of bias be used in the design and conduct of future studies.
Collapse
Affiliation(s)
| | - Sven Hoffmann
- Institute of Psychology, University of Hagen, Hagen, Germany
| | - Markus Raab
- Institute of Psychology, German Sport University, Cologne, Germany.,School of Applied Sciences, London South Bank University, London, UK
| | - Sylvain Laborde
- Institute of Psychology, German Sport University, Cologne, Germany.,UFR STAPS, EA 4260, Université de Caen Normandie, Caen, France
| |
Collapse
|
4
|
Stress-related dysautonomias and neurocardiology-based treatment approaches. Auton Neurosci 2022; 239:102944. [DOI: 10.1016/j.autneu.2022.102944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/13/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022]
|
5
|
Farinatti P, Cordeiro R, Vogel M, Machado S, Monteiro W. Postexercise blood pressure and autonomic responses after aerobic exercise following anodal tDCS applied over the medial prefrontal cortex. Neurosci Lett 2019; 711:134444. [PMID: 31445061 DOI: 10.1016/j.neulet.2019.134444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
Transcranial direct current stimulation (tDCS) is acknowledged to modulate autonomic cardiac activity and hemodynamic responses at rest and during exercise. However, its potential to optimize postexercise hypotension (PEH) has not been investigated. This study investigated the effects of anodal tDCS applied over the medial prefrontal cortex (mPFC) upon blood pressure (BP) and heart rate variability (HRV) throughout 60 min following acute aerobic exercise. Fifteen young men (27.5 ± 5.2 yrs; 72.9 ± 8 kg; 170 ± 0.1 cm; 124.1 ± 1.9/67.7 ± 2.1 mmHg) underwent three counterbalanced experimental sessions: a) anodal tDCS + exercise (tDCS); b) sham stimulation + exercise (SHAM); c) non-exercise control (CONT). Exercise consisted in 50-min cycling at 65-70% heart rate reserve. BP and HRV were assessed during 60-min postexercise. Mean reduction in systolic BP occurred after tDCS vs. SHAM (-4.1 mmHg; P=0.03) and CONT (-5.8 mmHg; P=0.003), and in MAP vs. CONT (-3.0 mmHg, P=0.03). Parasympathetic activity lowered after tDCS and SHAM vs. CONT, as respectively reflected by R-R intervals (-328.1% and -396.4%; P = 0.001), SDNN (-155.7% and -193.4%; P = 0.006), and pNN50 (-272.3% and -259.1%; P = 0.021). There was a clear tendency of increased sympatho-vagal balance vs. CONT (P = 0.387) after SHAM (+246.3%), but not tDCS (+25.9%). In conclusion, an aerobic exercise bout preceded by tDCS applied over mPFC induced PEH in normotensive men. Parasympathetic activity lowered, while sympatho-vagal balance increased after both tDCS and SHAM vs. CONT. However, these responses seemed to be tempered by anodal stimulation, which might help explaining the occurrence of PEH after tDCS and not SHAM. These findings warrant further research on the role of tDCS within exercise programs aiming at BP management.
Collapse
Affiliation(s)
- Paulo Farinatti
- Physical Activity and Health Promotion Laboratory (LABSAU), Institute of Physical Education and Sports, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil; Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, RJ, Brazil
| | - Ricardo Cordeiro
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, RJ, Brazil
| | - Marcus Vogel
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, RJ, Brazil
| | - Sergio Machado
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, RJ, Brazil
| | - Walace Monteiro
- Physical Activity and Health Promotion Laboratory (LABSAU), Institute of Physical Education and Sports, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil; Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, RJ, Brazil.
| |
Collapse
|