1
|
Lokman PM, Lynch D, Davie PS, Damsteegt EL. Releasing stored lipids to fuel migration and reproduction in the eel, Anguilla australis-a role for 11-ketotestosterone? FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:77. [PMID: 40195172 PMCID: PMC11976764 DOI: 10.1007/s10695-025-01480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025]
Abstract
Migrating freshwater eels depend on the mobilisation of stored lipids to successfully arrive at their distant spawning locations. As 11-ketotestosterone (11KT) can increase the lipid-transporting capability and enhance gonadal lipid uptake in eel, we hypothesized that this androgen would also regulate lipid mobilisation from its stores. To address this hypothesis, we first sampled residential (yellow) and migrating (silver) short-finned eels from the wild and evaluated the expression of 24 genes encoding lipolytic or lipogenic enzymes, as well as those encoding both nuclear androgen receptors, by NanoString analysis. Plasma 11KT levels in silver eels were dramatically increased, and mRNA levels of more than half of all target genes were higher in silver eel muscle; none of the target genes was significantly downregulated. Gene expression profiles in white muscle from wild-caught eels were subsequently compared with those from yellow and silver eels subjected to implantation with sustained-release implants containing 11KT. Several weeks of exposure resulted in plasma levels of 11KT that resembled those of wild-caught eels and resulted in a dose-dependent increase in gonadosomatic and hepatosomatic index; however, target gene expression profiles in muscle were barely affected. We conclude that lipid physiology in white muscle of silver eels is notably different from that in yellow eels, and that 11KT is not responsible for the differentially expressed gene profile between yellow and silver short-finned eels.
Collapse
Affiliation(s)
- P Mark Lokman
- Department of Zoology, University of Otago, Dunedin 9054, PO Box 56, Aotearoa, New Zealand.
| | - Deborah Lynch
- Department of Zoology, University of Otago, Dunedin 9054, PO Box 56, Aotearoa, New Zealand
| | - Peter S Davie
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, Aotearoa, New Zealand
| | - Erin L Damsteegt
- Department of Zoology, University of Otago, Dunedin 9054, PO Box 56, Aotearoa, New Zealand
| |
Collapse
|
2
|
Espírito-Santo C, Guardiola FA, Ozório ROA, Magnoni LJ. Short-term induced swimming activity enhanced innate immune parameters and antioxidant status of European eel (Anguilla anguilla). Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111680. [PMID: 38876440 DOI: 10.1016/j.cbpa.2024.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The swimming activity, although an essential trait in the life cycle of fish, is still poorly understood in farmed fish. The current study aimed to investigate the impact of short-term induced swimming on the immune and antioxidant defence systems in European eel (Anguilla anguilla). Sixteen male yellow European eels (total length: 39.9 ± 0.7 cm; body weight: 108.8 ± 6.1 g) were individually placed in swimming flumes and divided into two groups: i) no swimming (n = 8); and ii) induced-swimming (n = 8) at 0.3 body lengths (BL)·s-1 for 7 h. Swimming resulted in a 2-fold lower cortisol concentration in plasma, whereas plasma glucose, lactate, and several immune-related parameters did not present variations between groups. Interestingly, swimming led to higher lysozyme, peroxidase, and protease activities in skin mucus, whereas bactericidal activity did not show differences among groups. Additionally, the gene expression of interleukin 1 beta showed an up-regulation in the skin of fish with induced swimming, while no differences were observed in the head-kidney or gills. Furthermore, modulation of the antioxidant status was observed in the liver and posterior skeletal muscle after induced swimming. Fish subjected to swimming showed lower lipid peroxidation and higher reduced glutathione levels, increasing the reduced/oxidized glutathione ratio. However, no variations in the antioxidant status were observed between groups in the anterior skeletal muscle. This study showed modulation of immune and oxidative stress markers in European eels upon short-term induced swimming compared to non-swimming fish.
Collapse
Affiliation(s)
- Carlos Espírito-Santo
- Faculty of Sciences (FCUP), University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Rodrigo O A Ozório
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Leonardo J Magnoni
- The New Zealand Institute for Plant and Food Research Limited, Port Nelson, Nelson 7043, New Zealand
| |
Collapse
|
3
|
Espírito-Santo C, Guardiola FA, Ozório ROA, Magnoni LJ. Short-term swimming up-regulates pro-inflammatory mediators and cytokines in gilthead seabream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111487. [PMID: 37437802 DOI: 10.1016/j.cbpa.2023.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Aerobic swimming exercise in fish has been shown to improve robustness of some species. However, the optimal conditions to be applied and the mechanisms underlying remain unknown. We investigated the effects of 6 h of induced swimming on the immune response of gilthead seabream (Sparus aurata), by analysing markers related to immune status in plasma, skin mucus, gills, heart and head-kidney. Forty fish were individually exercised in swim tunnels by applying different water currents: steady low (SL, 0.8 body lengths (BL) s-1), steady high (SH, 2.3 BL s-1), oscillating low (OL, 0.2/0.8 BL s-1) and oscillating high (OH, 0.8/2.3 BL s-1) velocities, including a non-exercised group with minimal water flow (MF, <0.1 BL s-1). Swimming conditions did not trigger a stress response or anaerobic metabolism, suggested by similar levels of cortisol, lactate, and glucose in plasma among groups. Blood haemoglobin and innate immune parameters in plasma and skin mucus also remained unaltered. However, decreased blood haematocrit was observed in fish swimming on the OL condition. Interestingly, gene expression analysis revealed that the OL condition led to the up-regulation of pro-inflammatory mediators (nfκb1 and mapk3) and cytokines (tnfα, il1β and il6) in gills. A similar response occurred in heart, with an up-regulation of nfκb1, tnfα, il6 and cox2 in the OL condition. Gene expression of these cytokines was unaltered in the head-kidney. The inflammatory response in gills and heart of gilthead seabream triggered by the OL condition highlights the importance of establishing suitable rearing conditions to improve welfare of cultured fish.
Collapse
Affiliation(s)
- Carlos Espírito-Santo
- Faculty of Sciences (FCUP), University of Porto, Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal.
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Rodrigo O A Ozório
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Leonardo J Magnoni
- The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| |
Collapse
|
4
|
Eachus H, Oberski L, Paveley J, Bacila I, Ashton JP, Esposito U, Seifuddin F, Pirooznia M, Elhaik E, Placzek M, Krone NP, Cunliffe VT. Glucocorticoid receptor regulates protein chaperone, circadian clock and affective disorder genes in the zebrafish brain. Dis Model Mech 2023; 16:dmm050141. [PMID: 37525888 PMCID: PMC10565112 DOI: 10.1242/dmm.050141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Glucocorticoid resistance is commonly observed in depression, and has been linked to reduced expression and/or function of the glucocorticoid receptor (NR3C1 in human, hereafter referred to as GR). Previous studies have shown that GR-mutant zebrafish exhibit behavioural abnormalities that are indicative of an affective disorder, suggesting that GR plays a role in brain function. We compared the brain methylomes and brain transcriptomes of adult wild-type and GR-mutant zebrafish, and identified 249 differentially methylated regions (DMRs) that are regulated by GR. These include a cluster of CpG sites within the first intron of fkbp5, the gene encoding the glucocorticoid-inducible heat shock protein co-chaperone Fkbp5. RNA-sequencing analysis revealed that genes associated with chaperone-mediated protein folding, the regulation of circadian rhythm and the regulation of metabolism are particularly sensitive to loss of GR function. In addition, we identified subsets of genes exhibiting GR-regulated transcription that are known to regulate behaviour, and are linked to unipolar depression and anxiety. Taken together, our results identify key biological processes and novel molecular mechanisms through which the GR is likely to mediate responses to stress in the adult zebrafish brain, and they provide further support for the zebrafish GR mutant as a model for the study of affective disorders.
Collapse
Affiliation(s)
- Helen Eachus
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Lara Oberski
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jack Paveley
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Irina Bacila
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - John-Paul Ashton
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Umberto Esposito
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 12, 12 South Drive, Bethesda, MD 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Building 12, 12 South Drive, Bethesda, MD 20892, USA
| | - Eran Elhaik
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Marysia Placzek
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Nils P. Krone
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vincent T. Cunliffe
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
5
|
Dunlap KR, Laskin GR, Waddell DS, Black AJ, Steiner JL, Vied C, Gordon BS. Aerobic exercise-mediated changes in the expression of glucocorticoid responsive genes in skeletal muscle differ across the day. Mol Cell Endocrinol 2022; 550:111652. [PMID: 35461977 DOI: 10.1016/j.mce.2022.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Glucocorticoids are released in response to acute aerobic exercise. The objective was to define changes in the expression of glucocorticoid target genes in skeletal muscle in response to acute aerobic exercise at different times of day. We identified glucocorticoid target genes altered in skeletal muscle by acute exercise by comparing data sets from rodents subjected to acute aerobic exercise in the light or dark cycles to data sets from C2C12 myotubes treated with glucocorticoids. The role of glucocorticoid receptor signaling and REDD1 protein in mediating gene expression was assessed in exercised mice. Changes to expression of glucocorticoid genes were greater when exercise occurred in the dark cycle. REDD1 was required for the induction of genes induced at both times of day. In all, the time of day at which aerobic exercise is conducted dictates changes to the expression of glucocorticoid target genes in skeletal muscle with REDD1 contributing to those changes.
Collapse
Affiliation(s)
- Kirsten R Dunlap
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA
| | - Grant R Laskin
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA
| | - David S Waddell
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - Adam J Black
- Department of Cell Biology and Physiology, University of North Carolina, 111 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. Cottage Ave, Tallahassee, FL, 32306, USA
| | - Cynthia Vied
- Translational Sciences Laboratory, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, 600 W. Cottage Avenue, Tallahassee, FL, 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. Cottage Ave, Tallahassee, FL, 32306, USA.
| |
Collapse
|
6
|
Interaction between the Effects of Sustained Swimming Activity and Dietary Macronutrient Proportions on the Redox Status of Gilthead Sea Bream Juveniles (Sparus aurata L.). Antioxidants (Basel) 2022; 11:antiox11020319. [PMID: 35204202 PMCID: PMC8868478 DOI: 10.3390/antiox11020319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
The combination of physical exercise and a balanced diet presents substantial health benefits and could improve fish production. However, the redox balance can be affected by training regimen, dietary macronutrient ratio and their interaction. In this study, we conjointly evaluated the effects of physical activity (by voluntary swimming (VS) or sustained swimming as exercise (Ex)) and diet composition (by high-protein (HP) or high-lipid (HE) commercial diets) after 6 weeks on oxidative stress status in liver, white muscle and red muscle of gilthead sea bream juveniles. The HE diet increased the biochemical redox markers’ thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPP) and reduced thiols (-SH) in the different tissues. Exercise increased AOPP and -SH levels in liver but reduced TBARS levels in white muscle. Regarding the expression of oxidative stress, chaperones and apoptosis-related genes, the VSHE group showed the highest values and the VSHP the lowest, whereas the application of sustained swimming partially equalized those differences. Diet composition modulated the enzyme activity, prioritizing the superoxide dismutase and catalase in the HE-fed groups and the glutathione-related enzymes in the HP groups. Exercise also altered enzyme activity, but in a tissue-dependent manner. Overall, the redox balance in gilthead sea bream juveniles can be affected by diet composition and sustained swimming. However, the response will partly depend on the interaction between these factors and the tissue studied. Therefore, the combination of an adequate diet and sustained exercise could be used in fish production to improve the physiological redox status.
Collapse
|
7
|
Powell D, Ngo PT, Nguyen HN, Knibb W, Elizur A. Transcriptomic responses of saline-adapted Nile tilapia (Oreochromis niloticus) to rearing in both saline and freshwater. Mar Genomics 2021; 60:100879. [PMID: 34023275 DOI: 10.1016/j.margen.2021.100879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/26/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
The Nile tilapia, Oreochromis niloticus, is an important species for global aquaculture. Recently, a single genetic line of Nile tilapia was developed using estimated breeding values (EBVs) for body weight under moderately saline water that showed significant improvement in growth performance. To explore the molecular mechanisms underlying this enhanced growth capacity, RNA-Seq was used to profile differences in gene expression in the liver and pituitary gland of high- and low-growth performance families of male Nile tilapia progeny, reared in either saline or freshwater environments. Comparisons of tissues from high- and low-EBV families, and also between fish reared in either saline or freshwater, revealed 142 and 2208 differentially expressed genes (DEGs), respectively. DEGs identified between the EBV groups comprised a number of genes involved in the regulation of growth and reproduction. We found an overexpression of hormone genes involved in growth-inhibition in the pituitary of Low-EBV tilapia including 2 somatostatin genes (GHIH), corticoliberin (CRH) and tachykinin-3-like protein. Furthermore, several genes associated with the cAMP pathway were underexpressed in low-EBV tilapia pituitary together with several early response genes. This study provides insight into the transcriptomic factors associated with growth performance in saline-adapted Nile tilapia reared in environments with high and low salinity levels and provides valuable knowledge for the future development of selection strategies to improve growth performance in this species.
Collapse
Affiliation(s)
- Daniel Powell
- Department of Biology, Lund University, 223 62 Lund, Sweden; Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia.
| | - Phu Thoa Ngo
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia; Mavin Aquaculture, Mavin Group, Hudland Tower Building, No. 6 Nguyen Huu Tho, Hoang Liet Ward, Hoang Mai District, Hanoi, Viet Nam; Research Institute for Aquaculture No.1, Dinh Bang, Tu Son, Bac Ninh, Viet Nam.
| | - Hong Nguyen Nguyen
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia.
| | - Wayne Knibb
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia.
| | - Abigail Elizur
- Centre for Genetics, Ecology and Physiology, University of the Sunshine Coast, Sippy Downs, Queensland 4558, Australia.
| |
Collapse
|
8
|
Muscle Cortisol Levels, Expression of Glucocorticoid Receptor and Oxidative Stress Markers in the Teleost Fish Argyrosomus regius Exposed to Transport Stress. Animals (Basel) 2021; 11:ani11041160. [PMID: 33919515 PMCID: PMC8072758 DOI: 10.3390/ani11041160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
Fish commercial transport is an ordinary practice in the aquaculture industry. This study aimed to investigate the effect of a 48 h transport stress on stress response of meagre (Argyrosomus regius) juveniles. Radioimmunoassay (RIA) and Real-Time PCR were used to evaluate muscle cortisol levels and to assess glucocorticoid receptor (gr) gene expression in fish muscle and liver, respectively. Presence and localization of various oxidative stress markers were investigated in different tissues by immunohistochemistry. A significant increase in muscle cortisol levels was observed after loading but a significant decrease occurred after 16 h from departure even without returning to control levels. Molecular analysis on stress response revealed an increase in muscle gr expression after fish loading that started decreasing during the travel returning to the control level at the end of the transport. Instead, no differences in liver gr expression were observed along the different sampling points. Immunostaining for heat shock protein 70 (HSP70), 4-hydroxy-2-nonenal (HNE), nitrotyrosine (NT) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) antibodies was detected in several organs. Notably, a higher NT immunostaining intensity was evident in skin and gills of the transported animals with respect to controls. Results demonstrated that cortisol and gr are useful indicators of stressful conditions in transported fish.
Collapse
|
9
|
Illing B, Severati A, Hochen J, Boyd P, Raison P, Mather R, Downie AT, Rummer JL, Kroon FJ, Humphrey C. Automated flow control of a multi-lane swimming chamber for small fishes indicates species-specific sensitivity to experimental protocols. CONSERVATION PHYSIOLOGY 2021; 9:coaa131. [PMID: 33659062 PMCID: PMC7905161 DOI: 10.1093/conphys/coaa131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 05/03/2023]
Abstract
In fishes, swimming performance is considered an important metric to measure fitness, dispersal and migratory abilities. The swimming performance of individual larval fishes is often integrated into models to make inferences on how environmental parameters affect population-level dynamics (e.g. connectivity). However, little information exists regarding how experimental protocols affect the swimming performance of marine fish larvae. In addition, the technical setups used to measure larval fish swimming performance often lack automation and accurate control of water quality parameters and flow velocity. In this study, we automated the control of multi-lane swimming chambers for small fishes by developing an open-source algorithm. This automation allowed us to execute repeatable flow scenarios and reduce operator interference and inaccuracies in flow velocity typically associated with manual control. Furthermore, we made structural modifications to a prior design to reduce the areas of lower flow velocity. We then validated the flow dynamics of the new chambers using computational fluid dynamics and particle-tracking software. The algorithm provided an accurate alignment between the set and measured flow velocities and we used it to test whether faster critical swimming speed (U crit) protocols (i.e. shorter time intervals and higher velocity increments) would increase U crit of early life stages of two tropical fish species [4-10-mm standard length (SL)]. The U crit of barramundi (Lates calcarifer) and cinnamon anemonefish (Amphiprion melanopus) increased linearly with fish length, but in cinnamon anemonefish, U crit started to decrease upon metamorphosis. Swimming protocols using longer time intervals (more than 2.5 times increase) negatively affected U crit in cinnamon anemonefish but not in barramundi. These species-specific differences in swimming performance highlight the importance of testing suitable U crit protocols prior to experimentation. The automated control of flow velocity will create more accurate and repeatable data on swimming performance of larval fishes. Integrating refined measurements into individual-based models will support future research on the effects of environmental change.
Collapse
Affiliation(s)
- Björn Illing
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Andrea Severati
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| | - Justin Hochen
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| | - Paul Boyd
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| | - Paulin Raison
- École Polytechnique Fédérale de Lausanne, School of Engineering, Route Cantonale, 1015 Lausanne, Switzerland
| | - Rachel Mather
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Adam T Downie
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Frederieke J Kroon
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
- Division of Research and Innovation, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811, Australia
| | - Craig Humphrey
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| |
Collapse
|
10
|
Palstra AP, Roque A, Kruijt L, Jéhannet P, Pérez-Sánchez J, Dirks RP. Physiological Effects of Water Flow Induced Swimming Exercise in Seabream Sparus aurata. Front Physiol 2020; 11:610049. [PMID: 33364981 PMCID: PMC7750471 DOI: 10.3389/fphys.2020.610049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022] Open
Abstract
A longer on-land rearing period of Gilthead seabream Sparus aurata before transfer to sea-cages would allow the farmer to benefit from exercise-enhanced growth, resilience, and robustness as induced by increasing water flow in the tanks. In this study, the physiological effects of flow-conditioning were investigated by subjecting large groups of experimental fish to minimal flow or to flow regimes inducing swimming exercise at 1 or 2 body length (BL) s−1 for a period of 8 months (February–October) in 1,500 L tanks. Fish representing the three treatment groups were then used for: (1) a stress challenge netting test and plasma cortisol measurement (baseline, peaking, and recovery levels), (2) blood plasma measurements of glucose, triglycerides, lactate, cholesterol, growth hormone (GH), and insulin-like growth factor 1 (IGF1), and (3) heart and muscle gene expression of the GH and IGF1 receptors and the muscle transcriptome by deep RNA sequencing (RNAseq). Fish size after 8 months of flow conditioning was 92 ± 27 g body weight (BW) for fish under minimal flow, 106 ± 24 g BW (+15%) at 1 BL s−1, and 125 ± 27 g BW (+36%) at 2 BL s−1. Flow conditioning at 1 BL s−1 provided optimal conditions for growth and uniformity, but also stress (lowest baseline plasma cortisol), robustness (higher condition factor and larger hearts), and energy mobilization (increased plasma glucose). Although flow enhanced growth linearly with swimming speed, also the percentage of lordotic fish increased with exercise, particularly high for swimming at 2 BL s−1. The absence of important differences in plasma GH and IGF1, and expression levels of their receptors in heart and white skeletal muscle, indicated that other factors may be involved in growth enhancement. RNAseq of the white skeletal muscle showed upregulated expression of genes involved in muscle contraction, muscle development and its molecular regulation, and immune genes that may play a role in the muscle repair mechanism. An exercise regime of swimming at 1 BL s−1 can be considered as optimal for farming robust seabream although the increase of skeletal deformities should be avoided.
Collapse
Affiliation(s)
- Arjan P Palstra
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen, Netherlands
| | - Ana Roque
- IRTA-SCR, Sant Carles de la Rapita, Spain
| | - Leo Kruijt
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen, Netherlands
| | - Pauline Jéhannet
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen, Netherlands
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC), Castellon, Spain
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, Netherlands
| |
Collapse
|
11
|
Nadermann N, Volkoff H. Effects of short-term exercise on food intake and the expression of appetite-regulating factors in goldfish. Peptides 2020; 123:170182. [PMID: 31678371 DOI: 10.1016/j.peptides.2019.170182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
In mammals, growing evidence indicates that exercise affects food intake, metabolism and the expression and blood levels of appetite regulators. In this study, we examined the effects of short-term (30 min, at low and high water flow) exercise on food intake, glucose levels and the expressions of appetite regulators in goldfish hypothalamus (irisin, orexin, CART, leptin), intestine (CCK, PYY, proglucagon/GLP-1), muscle (irisin) and liver (leptin), of brain-derived neurotrophic factor (BDNF) in brain, interleukin-6 (IL6) in muscle and hypothalamus, and major metabolic enzymes, the glycolytic enzyme glucokinase (GCK) and its regulatory protein (GCKR) in liver, the lipolytic enzyme lipoprotein lipase in intestine and muscle, and trypsin in intestine. Fish submitted to high flow exercise had a lower post-exercise food intake compared to control fish but no differences were seen in glucose levels between groups. Exercise induced an increase in hypothalamic expression levels of CART, IL6 and BDNF, but not orexin, irisin, CRF, leptin and NPY. High flow exercise induced an increase in intestine CCK, PYY and GLP-1, and muscle irisin and IL-6 expression levels. Exercise had no effects on expression levels of hepatic leptin or any of the metabolic enzymes examined. Our results suggest that, in goldfish, short-term exercise might decrease feeding in part by affecting the expressions of myokines and peripheral, but not central appetite regulators or metabolic enzyme/hormones.
Collapse
Affiliation(s)
- Noelle Nadermann
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Hochschule Mannheim University, Mannheim, 68163, Germany
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|