1
|
Chi HM, Hsiao TC. Physiological Regularity and Synchrony in Individuals with Gaming Disorder. ENTROPY (BASEL, SWITZERLAND) 2024; 26:769. [PMID: 39330102 PMCID: PMC11431265 DOI: 10.3390/e26090769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024]
Abstract
Individuals with gaming disorder (GD) show emotional dysregulation and autonomic dysfunction in daily life. Although studies have shown that the relaxation method of breathing exercise (BE) improves cardiopulmonary synchrony, the physiological regularity and synchrony of GD remain unclear. In this study, we investigated the regularities of pulse wave (PW), thoracic wall movement (TWM), and abdominal wall movement (AWM) using sample entropy (SE) and assessed the vascular-respiratory and TWM-AWM synchrony using cross-sample entropy (CSE). Twenty individuals with GD and 26 healthy control (HC) individuals participated in baseline, gaming, and recovery stages, both before and after BEs. The results showed that both groups had significantly higher SETWM, SEAWM, and CSETWM-AWM during gaming than baseline. Before BE, CSEPW-TWM and CSEPW-AWM during gaming were considerably higher in the GD group than in the HC group. Compared to before BE, both groups had decreased SETWM and CSETWM-AWM during gaming, particularly in the HC group. Online gaming may induce pulse wave and respiratory irregularities, as well as thoracic-abdominal wall movement asynchrony. Individuals with GD who engage in prolonged gaming periods may exhibit lower vascular-respiratory synchrony compared to the HC group. SETWM, SEAWM, CSETWM-AWM, CSEPW-TWM, and CSEPW-AWM may serve as biomarkers for assessing the risk of GD. BE may improve TWM regularity and vascular-respiratory synchrony during gaming, potentially alleviating addictive behavior.
Collapse
Affiliation(s)
- Hung-Ming Chi
- Department of Medical Informatics, College of Health Care and Management, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Tzu-Chien Hsiao
- Department of Computer Science, College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
2
|
Zhang D, Ma C, Xu L, Liu X, Cui H, Wei Y, Zheng W, Hong Y, Xie Y, Qian Z, Hu Y, Tang Y, Li C, Liu Z, Chen T, Liu H, Zhang T, Wang J. Abnormal Scanning Patterns Based on Eye Movement Entropy in Early Psychosis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00161-7. [PMID: 38909898 DOI: 10.1016/j.bpsc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Restricted scan path mode is hypothesized to explain abnormal scanning patterns in patients with schizophrenia. Here, we calculated entropy scores (drawing on gaze data to measure the statistical randomness of eye movements) to quantify how strategical and random participants were when processing image stimuli. METHODS Eighty-six patients with first-episode schizophrenia (FES), 124 individuals at clinical high risk (CHR) for psychosis, and 115 healthy control participants (HCs) completed an eye-tracking examination while freely viewing 35 static images (each presented for 10 seconds) and cognitive assessments. We compared group differences in the overall entropy score, as well as entropy scores under various conditions. We also investigated the correlations between entropy scores and symptoms and cognitive function. RESULTS Increased overall entropy scores were noted in the FES and CHR groups compared with the HC group, and these differences were already apparent within 0 to 2.5 seconds. In addition, the CHR group exhibited higher entropy than the HC group when viewing low-meaning images. Moreover, the entropy within 0 to 2.5 seconds showed significant correlations with negative symptoms in the FES group, attention/vigilance scores in the CHR group, and speed of processing and attention/vigilance scores across all 3 groups. CONCLUSIONS The results indicate that individuals with FES and those at CHR scanned pictures more randomly and less strategically than HCs. These patterns also correlated with clinical symptoms and neurocognition. The current study highlights the potential of the eye movement entropy measure as a neurophysiological marker for early psychosis.
Collapse
Affiliation(s)
- Dan Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chunyan Ma
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xu Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wensi Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yawen Hong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuou Xie
- First Clinical Medical College of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yegang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhi Liu
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, People's Republic of China; School of Communication and Information Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Tao Chen
- Labor and Worklife Program, Harvard University, Cambridge, Massachusetts; Big Data Research Laboratory, University of Waterloo, Waterloo, Ontario, Canada; Niacin (Shanghai) Technology Co., Ltd., Shanghai, People's Republic of China
| | - Haichun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Jiang Z, Seyedi S, Griner E, Abbasi A, Rad AB, Kwon H, Cotes RO, Clifford GD. Multimodal Mental Health Digital Biomarker Analysis From Remote Interviews Using Facial, Vocal, Linguistic, and Cardiovascular Patterns. IEEE J Biomed Health Inform 2024; 28:1680-1691. [PMID: 38198249 PMCID: PMC10986761 DOI: 10.1109/jbhi.2024.3352075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
OBJECTIVE Psychiatric evaluation suffers from subjectivity and bias, and is hard to scale due to intensive professional training requirements. In this work, we investigated whether behavioral and physiological signals, extracted from tele-video interviews, differ in individuals with psychiatric disorders. METHODS Temporal variations in facial expression, vocal expression, linguistic expression, and cardiovascular modulation were extracted from simultaneously recorded audio and video of remote interviews. Averages, standard deviations, and Markovian process-derived statistics of these features were computed from 73 subjects. Four binary classification tasks were defined: detecting 1) any clinically-diagnosed psychiatric disorder, 2) major depressive disorder, 3) self-rated depression, and 4) self-rated anxiety. Each modality was evaluated individually and in combination. RESULTS Statistically significant feature differences were found between psychiatric and control subjects. Correlations were found between features and self-rated depression and anxiety scores. Heart rate dynamics provided the best unimodal performance with areas under the receiver-operator curve (AUROCs) of 0.68-0.75 (depending on the classification task). Combining multiple modalities provided AUROCs of 0.72-0.82. CONCLUSION Multimodal features extracted from remote interviews revealed informative characteristics of clinically diagnosed and self-rated mental health status. SIGNIFICANCE The proposed multimodal approach has the potential to facilitate scalable, remote, and low-cost assessment for low-burden automated mental health services.
Collapse
|
4
|
Porta-García MÁ, Quiroz-Salazar A, Abarca-Castro EA, Reyes-Lagos JJ. Bradycardia May Decrease Cardiorespiratory Coupling in Preterm Infants. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1616. [PMID: 38136496 PMCID: PMC10743269 DOI: 10.3390/e25121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
Bradycardia, frequently observed in preterm infants, presents significant risks due to the immaturity of their autonomic nervous system (ANS) and respiratory systems. These infants may face cardiorespiratory events, leading to severe complications like hypoxemia and neurodevelopmental disorders. Although neonatal care has advanced, the influence of bradycardia on cardiorespiratory coupling (CRC) remains elusive. This exploratory study delves into CRC in preterm infants, emphasizing disparities between events with and without bradycardia. Using the Preterm Infant Cardio-Respiratory Signals (PICS) database, we analyzed interbeat (R-R) and inter-breath intervals (IBI) from 10 preterm infants. The time series were segmented into bradycardic (B) and non-bradycardic (NB) segments. Employing information theory measures, we quantified the irregularity of cardiac and respiratory time series. Notably, B segments had significantly lower entropy values for R-R and IBI than NB segments, while mutual information was higher in NB segments. This could imply a reduction in the complexity of respiratory and cardiac dynamics during bradycardic events, potentially indicating weaker CRC. Building on these insights, this research highlights the distinctive physiological characteristics of preterm infants and underscores the potential of emerging non-invasive diagnostic tools.
Collapse
Affiliation(s)
- Miguel Ángel Porta-García
- Center of Research and Innovation in Information Technology and Communication—INFOTEC, Mexico City 14050, Mexico;
- School of Medicine, Autonomous University of the State of Mexico (UAEMéx), Toluca de Lerdo 50180, Mexico;
| | - Alberto Quiroz-Salazar
- School of Medicine, Autonomous University of the State of Mexico (UAEMéx), Toluca de Lerdo 50180, Mexico;
| | - Eric Alonso Abarca-Castro
- Department of Health Sciences, Metropolitan Autonomous University-Lerma (UAM-L), Lerma de Villada 52005, Mexico;
| | - José Javier Reyes-Lagos
- School of Medicine, Autonomous University of the State of Mexico (UAEMéx), Toluca de Lerdo 50180, Mexico;
| |
Collapse
|
5
|
Romanchuk O. Cardiorespiratory dynamics during respiratory maneuver in athletes. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3. [DOI: https:/doi.org/10.3389/fnetp.2023.1276899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Introduction: The modern practice of sports medicine and medical rehabilitation requires the search for subtle criteria for the development of conditions and recovery of the body after diseases, which would have a prognostic value for the prevention of negative effects of training and rehabilitation tools, and also testify to the development and course of mechanisms for counteracting pathogenetic processes in the body. The purpose of this study was to determine the informative directions of the cardiorespiratory system parameters dynamics during the performing a maneuver with a change in breathing rate, which may indicate the body functional state violation.Methods: The results of the study of 183 healthy men aged 21.2 ± 2.3 years who regularly engaged in various sports were analyzed. The procedure for studying the cardiorespiratory system included conducting combined measurements of indicators of activity of the respiratory and cardiovascular systems in a sitting position using a spiroarteriocardiograph device. The duration of the study was 6 min and involved the sequential registration of three measurements with a change in breathing rate (spontaneous breathing, breathing at 0.1 Hz and 0.25 Hz).Results: Performing a breathing maneuver at breathing 0.1 Hz and breathing 0.25 Hz in comparison with spontaneous breathing leads to multidirectional significant changes in heart rate variability indicators–TP (ms2), LF (ms2), LFHF (ms2/ms2); of blood pressure variability indicators–TPDBP (mmHg2), LFSBP (mmHg2), LFDBP (mmHg2), HFSBP (mmHg2); of volume respiration variability indicators - LFR, (L×min-1)2; HFR, (L×min-1)2; LFHFR, (L×min-1)2/(L×min-1)2; of arterial baroreflex sensitivity indicators - BRLF (ms×mmHg-1), BRHF (ms×mmHg-1). Differences in indicators of systemic hemodynamics and indicators of cardiovascular and respiratory systems synchronization were also informative.Conclusion: According to the results of the study, it is shown that during performing a breathing maneuver with a change in the rate of breathing, there are significant changes in cardiorespiratory parameters, the analysis of which the increments made it possible to determine of the changes directions dynamics, their absolute values and informative limits regarding the possible occurrence of the cardiorespiratory interactions dysregulation.
Collapse
|
6
|
Romanchuk O. Cardiorespiratory dynamics during respiratory maneuver in athletes. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1276899. [PMID: 38020241 PMCID: PMC10643240 DOI: 10.3389/fnetp.2023.1276899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Introduction: The modern practice of sports medicine and medical rehabilitation requires the search for subtle criteria for the development of conditions and recovery of the body after diseases, which would have a prognostic value for the prevention of negative effects of training and rehabilitation tools, and also testify to the development and course of mechanisms for counteracting pathogenetic processes in the body. The purpose of this study was to determine the informative directions of the cardiorespiratory system parameters dynamics during the performing a maneuver with a change in breathing rate, which may indicate the body functional state violation. Methods: The results of the study of 183 healthy men aged 21.2 ± 2.3 years who regularly engaged in various sports were analyzed. The procedure for studying the cardiorespiratory system included conducting combined measurements of indicators of activity of the respiratory and cardiovascular systems in a sitting position using a spiroarteriocardiograph device. The duration of the study was 6 min and involved the sequential registration of three measurements with a change in breathing rate (spontaneous breathing, breathing at 0.1 Hz and 0.25 Hz). Results: Performing a breathing maneuver at breathing 0.1 Hz and breathing 0.25 Hz in comparison with spontaneous breathing leads to multidirectional significant changes in heart rate variability indicators-TP (ms2), LF (ms2), LFHF (ms2/ms2); of blood pressure variability indicators-TPDBP (mmHg2), LFSBP (mmHg2), LFDBP (mmHg2), HFSBP (mmHg2); of volume respiration variability indicators - LFR, (L×min-1)2; HFR, (L×min-1)2; LFHFR, (L×min-1)2/(L×min-1)2; of arterial baroreflex sensitivity indicators - BRLF (ms×mmHg-1), BRHF (ms×mmHg-1). Differences in indicators of systemic hemodynamics and indicators of cardiovascular and respiratory systems synchronization were also informative. Conclusion: According to the results of the study, it is shown that during performing a breathing maneuver with a change in the rate of breathing, there are significant changes in cardiorespiratory parameters, the analysis of which the increments made it possible to determine of the changes directions dynamics, their absolute values and informative limits regarding the possible occurrence of the cardiorespiratory interactions dysregulation.
Collapse
Affiliation(s)
- Oleksandr Romanchuk
- Department of Medical Rehabilitation, Ukrainian Research Institute of Medical Rehabilitation and Resort Therapy of the Ministry of Health of Ukraine, Odesa, Ukraine
| |
Collapse
|
7
|
Jiang Z, Seyedi S, Griner E, Abbasi A, Bahrami Rad A, Kwon H, Cotes RO, Clifford GD. Multimodal mental health assessment with remote interviews using facial, vocal, linguistic, and cardiovascular patterns. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.11.23295212. [PMID: 37745610 PMCID: PMC10516063 DOI: 10.1101/2023.09.11.23295212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Objective The current clinical practice of psychiatric evaluation suffers from subjectivity and bias, and requires highly skilled professionals that are often unavailable or unaffordable. Objective digital biomarkers have shown the potential to address these issues. In this work, we investigated whether behavioral and physiological signals, extracted from remote interviews, provided complimentary information for assessing psychiatric disorders. Methods Time series of multimodal features were derived from four conceptual modes: facial expression, vocal expression, linguistic expression, and cardiovascular modulation. The features were extracted from simultaneously recorded audio and video of remote interviews using task-specific and foundation models. Averages, standard deviations, and hidden Markov model-derived statistics of these features were computed from 73 subjects. Four binary classification tasks were defined: detecting 1) any clinically-diagnosed psychiatric disorder, 2) major depressive disorder, 3) self-rated depression, and 4) self-rated anxiety. Each modality was evaluated individually and in combination. Results Statistically significant feature differences were found between controls and subjects with mental health conditions. Correlations were found between features and self-rated depression and anxiety scores. Visual heart rate dynamics achieved the best unimodal performance with areas under the receiver-operator curve (AUROCs) of 0.68-0.75 (depending on the classification task). Combining multiple modalities achieved AUROCs of 0.72-0.82. Features from task-specific models outperformed features from foundation models. Conclusion Multimodal features extracted from remote interviews revealed informative characteristics of clinically diagnosed and self-rated mental health status. Significance The proposed multimodal approach has the potential to facilitate objective, remote, and low-cost assessment for low-burden automated mental health services.
Collapse
|
8
|
Pichardo-Carmona EY, Reyes-Lagos JJ, Ceballos-Juárez RG, Ledesma-Ramírez CI, Mendieta-Zerón H, Peña-Castillo MÁ, Nsugbe E, Porta-García MÁ, Mina-Paz Y. Changes in the autonomic cardiorespiratory activity in parturient women with severe and moderate features of preeclampsia. Front Immunol 2023; 14:1190699. [PMID: 37724103 PMCID: PMC10505439 DOI: 10.3389/fimmu.2023.1190699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/03/2023] [Indexed: 09/20/2023] Open
Abstract
Background Cardiorespiratory coupling (CRC) is a physiological phenomenon that reflects the mutual interaction between the cardiac and respiratory control systems. It is mainly associated with efferent vagal activity from the central autonomic network. Few studies have explored the autonomic changes of CRC in preeclampsia, a critical obstetric complication related to possible autonomic dysfunctions and inflammatory disturbances. This study examined the autonomic mechanisms of CRC in women with severe and moderate preeclampsia and healthy controls by applying nonlinear methods based on information theory, such as mutual information (MI) and Renyi's mutual information (RMI) and the linear and nonlinear analysis of the Pulse-Respiration Quotient (PRQ). Methods We studied three groups of parturient women in the third trimester of pregnancy with a clinical diagnosis of preeclampsia without severe symptoms (P, 38.5 ± 1.4 weeks of pregnancy, n=19), preeclampsia with severe symptoms (SP, 37.5 ± 0.9 weeks of pregnancy, n=22), and normotensive control women (C, 39.1 ± 1.3 weeks of pregnancy, n=20). 10-minutes of abdominal electrocardiograms (ECG) and respiratory signals (RESP) were recorded in all the participants. Subsequently, we obtained the maternal beat-to-beat (RR) and breath-to-breath (BB) time series from ECG and RESP, respectively. The CRC between RR and BB was quantified by nonlinear methods based on information theory, such as MI and RMI, along with the analysis of the novel index of PRQ. Subsequently, we computed the mean PRQ (mPRQ) and the normalized permutation entropy (nPermEn_PRQ) from the PRQ time series generated from BB and RR. In addition, we examined the vagal activity in the three groups by the logarithm of the median of the distribution of the absolute values of successive RR differences (logRSA). Results The MI and RMI values were significantly lower (p<0.05) in the preeclamptic groups compared to the control group. However, no significant differences were found between the preeclamptic groups. The logRSA and nPermEn_PRQ indices were significantly lower (p<0.05) in SP compared to C and P. Conclusion Our data suggest that parturient women with severe and mild preeclampsia may manifest an altered cardiorespiratory coupling compared with normotensive control women. Disrupted CRC in severe preeclampsia could be associated with vagal withdrawal and less complex cardiorespiratory dynamics. The difference in vagal activity between the preeclamptic groups may suggest a further reduction in vagal activity associated with the severity of the disease.
Collapse
Affiliation(s)
| | | | | | | | - Hugo Mendieta-Zerón
- School of Medicine, Autonomous University of the State of Mexico (UAEMéx), Toluca, Mexico
- Mónica Pretelini Sáenz Maternal-Perinatal Hospital, Health Institute of the State of Mexico (ISEM), Toluca, Mexico
| | | | - Ejay Nsugbe
- Nsugbe Research Labs, Swindon, United Kingdom
| | | | - Yecid Mina-Paz
- Faculty of Health Sciences, Universidad Libre Seccional Cali, Cali, Colombia
| |
Collapse
|
9
|
Liu H, Liang H, Yu X, Han Y, Wang G, Yan M, Wang W, Li S. A study on the immediate effects of enhanced external counterpulsation on physiological coupling. Front Neurosci 2023; 17:1197598. [PMID: 37351421 PMCID: PMC10282182 DOI: 10.3389/fnins.2023.1197598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Enhanced external counterpulsation (EECP) is a non-invasive assisted circulation technique for its clinical application in the rehabilitation and management of ischemic cardiovascular and cerebrovascular diseases, which has complex physiological and hemodynamic effects. However, the effects of EECP on the coupling of physiological systems are still unclear. We aimed to investigate the immediate effects of EECP on the coupling between integrated physiological systems such as cardiorespiratory and cardiovascular systems. Methods Based on a random sham-controlled design, simultaneous electrocardiography, photoplethysmography, bio-electrical impedance, and continuous hemodynamic data were recorded before, during and after two consecutive 30 min EECP in 41 healthy adults. Physiological coupling strength quantified by phase synchronization indexes (PSI), hemodynamic measurements and heart rate variability indices of 22 subjects (female/male: 10/12; age: 22.6 ± 2.1 years) receiving active EECP were calculated and compared with those of 19 sham control subjects (female/male: 7/12; age: 23.6 ± 2.5 years). Results Immediately after the two consecutive EECP interventions, the physiological coupling between respiratory and cardiovascular systems PSIRES-PTT (0.34 ± 0.14 vs. 0.49 ± 0.17, P = 0.002), the physiological coupling between cardiac and cardiovascular systems PSIIBI-PTT (0.41 ± 0.14 vs. 0.52 ± 0.16, P = 0.006) and the total physiological coupling PSItotal (1.21 ± 0.35 vs. 1.57 ± 0.49, P = 0.005) in the EECP group were significantly lower than those before the EECP intervention, while the physiological coupling indexes in the control group did not change significantly (P > 0.05). Conclusion Our study provides evidence that the PSI is altered by immediate EECP intervention. We speculate that the reduced PSI induced by EECP may be a marker of disturbed physiological coupling. This study provides a new method for exploring the mechanism of EECP action and may help to further optimize the EECP technique.
Collapse
Affiliation(s)
- Hongyun Liu
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Hui Liang
- Department of Hyperbaric Oxygen, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaohua Yu
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Yi Han
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Guojing Wang
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Muyang Yan
- Department of Hyperbaric Oxygen, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weidong Wang
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Shijun Li
- Department of Diagnostic Radiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Da Silva CD, Catai AM, Abreu RMD, Signini ÉDF, Galdino GAM, Lorevice L, Santos LM, Mendes RG. Cardiorespiratory coupling as an early marker of cardiac autonomic dysfunction in type 2 diabetes mellitus patients. Respir Physiol Neurobiol 2023; 311:104042. [PMID: 36858335 DOI: 10.1016/j.resp.2023.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023]
Abstract
The aim of this study was to assess cardiorespiratory coupling (CRC) in type 2 diabetes mellitus patients (T2DM) and apparently healthy individuals, in order to test the hypothesis that this method can provide additional knowledge to the information obtained through the heart rate variability (HRV). A cross-sectional study was conducted in T2DM patients(T2DMG=32) and health controls (CON=32). For CRC analysis, the electrocardiogram, arterial pressure, and thoracic respiratory movement were recorded at rest in supine position and during active standing. Beat-to-beat series of heart period and systolic arterial pressure were analyzed with the respiratory movement signal via a traditional non-causal approach, such as squared coherence function. In this sample of T2DM, no differences in HRV were observed when compared to the CON, but the T2DMG showed a reduction in resting CRC. We conclude that in CRC in T2DM, reflected by the squared coherence may already be compromised even before HRV changes.
Collapse
Affiliation(s)
- Claudio Donisete Da Silva
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Aparecida Maria Catai
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Raphael Martins de Abreu
- LUNEX University, International University of Health, Exercise & Sports S.A. 50, Department of Physiotherapy, Differdange, Luxembourg. 50 Avenue du Parc des Sports, L-4671, Differdange, Luxembourg; LUNEX ASBL Luxembourg Health & Sport Sciences Research Institute, Differdange, Luxembourg. 50 Avenue du Parc des Sports, L-4671, Differdange, Luxembourg
| | - Étore De Favari Signini
- Cardiovascular Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | | | - Laura Lorevice
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Letícia Menegalli Santos
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil
| | - Renata Gonçalves Mendes
- Cardiopulmonary Physical Therapy Laboratory, Department of Physical Therapy, Federal University of São Carlos, Brazil.
| |
Collapse
|
11
|
Park C, Youn I, Han S. Single-lead ECG based autonomic nervous system assessment for meditation monitoring. Sci Rep 2022; 12:22513. [PMID: 36581715 PMCID: PMC9800362 DOI: 10.1038/s41598-022-27121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
We propose a single-lead ECG-based heart rate variability (HRV) analysis algorithm to quantify autonomic nervous system activity during meditation. Respiratory sinus arrhythmia (RSA) induced by breathing is a dominant component of HRV, but its frequency depends on an individual's breathing speed. To address this RSA issue, we designed a novel HRV tachogram decomposition algorithm and new HRV indices. The proposed method was validated by using a simulation, and applied to our experimental (mindfulness meditation) data and the WESAD open-source data. During meditation, our proposed HRV indices related to vagal and sympathetic tones were significantly increased (p < 0.000005) and decreased (p < 0.000005), respectively. These results were consistent with self-reports and experimental protocols, and identified parasympathetic activation and sympathetic inhibition during meditation. In conclusion, the proposed method successfully assessed autonomic nervous system activity during meditation when respiration influences disrupted classical HRV. The proposed method can be considered a reliable approach to quantify autonomic nervous system activity.
Collapse
Affiliation(s)
- Chanki Park
- grid.36303.350000 0000 9148 4899Future and Basic Technology Research Division, ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, CybreBrain Research Section, Daejeon, 34129 Republic of Korea
| | - Inchan Youn
- grid.35541.360000000121053345Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea ,grid.35541.360000000121053345Division of Bio‑Medical Science and Technology, Korea Institute of Science and Technology School, Seoul, 02792 Republic of Korea ,grid.289247.20000 0001 2171 7818KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Seongbuk-gu 02447 Republic of Korea
| | - Sungmin Han
- grid.35541.360000000121053345Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea ,grid.35541.360000000121053345Division of Bio‑Medical Science and Technology, Korea Institute of Science and Technology School, Seoul, 02792 Republic of Korea
| |
Collapse
|
12
|
Liu H, Yu X, Wang G, Han Y, Wang W. Effects of 24-h acute total sleep deprivation on physiological coupling in healthy young adults. Front Neurosci 2022; 16:952329. [PMID: 36161147 PMCID: PMC9493191 DOI: 10.3389/fnins.2022.952329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Sleep deprivation is associated with dysregulation of the autonomic nervous system, adverse cardiovascular events, cognitive and complex motor performance impairment. Less is known about the effects of acute total sleep deprivation (ATSD) on physiological coupling. We aimed to determine the effects of 24-h ATSD on the physiological coupling between complex subsystems by evaluating the cardiorespiratory, cardiovascular and cortico-cardiac interactions. This study enrolled 38 young healthy participants aged 23.2 ± 2.4 years. Multiple synchronous physiological signals including electrocardiography, photoplethysmography, bio-electrical impedance, electroencephalography, and continuous hemodynamic data, were performed over a baseline night after regular sleep and after a night with 24-h ATSD in the supine position. The magnitude squared coherence, phase synchronization index, and heartbeat evoked potential amplitudes, were obtained from 10-min synchronous physiological recordings to estimate the coupling strength between two time series. Parameters of hemodynamic characteristics and heart rate variability were also calculated to quantify autonomic regulation. Results indicated that the magnitude squared coherence (0.38 ± 0.17 vs. 0.29 ± 0.12, p = 0.015) between respiration and heart rate variability along with the magnitude squared coherence (0.36 ± 0.18 vs. 0.27 ± 0.13, p = 0.012) between respiration and pulse transit time were significantly decreased after 24-h ATSD. There were no significant differences (all p > 0.05) in phase synchronization indices, heartbeat evoked potential amplitudes as well as other analyzed measurements between baseline and 24-h ATSD states. We conclude that exposure to 24-h ATSD appears to weaken the cardiorespiratory and respiratory-cardiovascular coupling strength of young healthy adults. These findings suggest that physiological coupling analysis may serve as a complementary approach for characterizing and understanding the complex effects of sleep deprivation.
Collapse
Affiliation(s)
- Hongyun Liu
- Medical Innovation Research Division, Research Center for Biomedical Engineering, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
- *Correspondence: Hongyun Liu,
| | - Xiaohua Yu
- Medical Innovation Research Division, Research Center for Biomedical Engineering, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Guojing Wang
- Medical Innovation Research Division, Research Center for Biomedical Engineering, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Yi Han
- Medical Innovation Research Division, Research Center for Biomedical Engineering, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Weidong Wang
- Medical Innovation Research Division, Research Center for Biomedical Engineering, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
- Weidong Wang,
| |
Collapse
|
13
|
Wang H, Liu F, Dong Y, Yu D. Entropy of eye movement during rapid automatized naming. Front Hum Neurosci 2022; 16:945406. [PMID: 36034115 PMCID: PMC9407438 DOI: 10.3389/fnhum.2022.945406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have focused on the understanding of rapid automatized naming (RAN), which can be applied to predict reading abilities and developmental dyslexia in children. Eye tracking technique, characterizing the essential ocular activities, might have the feasibility to reveal the visual and cognitive features of RAN. However, traditional measures of eye movements ignore many dynamical details about the visual and cognitive processing of RAN, and are usually associated with the duration of time spent on some particular areas of interest, fixation counts, revisited fixation counts, saccadic velocities, or saccadic amplitudes. To cope with this drawback, we suggested an entropy-based method to measure eye movements for the first time, which first mapped eye movements during RAN in a time-series and then analyzed the time-series by a proper definition of entropy from the perspective of information theory. Our findings showed that the entropy was more sensitive to reflect small perturbation (e.g., rapid movements between focuses in the presence of skipping or omitting some stimulus during RAN) of eye movements, and thus gained better performance than traditional measures. We also verified that the entropy of eye movements significantly deceased with the age and the task complexity of RAN, and significantly correlated with traditional eye-movement measures [e.g., total time of naming (TTN)] and the RAN-related skills [e.g., selective attention (SA), cognitive speed, and visual-motor integration]. Our findings may bring some new insights into the understanding of both RAN and eye tracking technique itself.
Collapse
Affiliation(s)
- Hongan Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fulin Liu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yuhong Dong
- Henan Provincial Medical Key Lab of Language Rehabilitation for Children, Sanmenxia Central Hospital, Sanmenxia, China
| | - Dongchuan Yu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Henan Provincial Medical Key Lab of Language Rehabilitation for Children, Sanmenxia Central Hospital, Sanmenxia, China
- Henan Provincial Medical Key Lab of Child Developmental Behavior and Learning, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Abreu RMD, Porta A, Rehder-Santos P, Cairo B, Sakaguchi CA, da Silva CD, Signini ÉDF, Milan-Mattos JC, Catai AM. Cardiorespiratory coupling strength in athletes and non-athletes. Respir Physiol Neurobiol 2022; 305:103943. [PMID: 35835289 DOI: 10.1016/j.resp.2022.103943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Despite the relevant presence of nonlinear components on heart period (HP) likely due to cardiorespiratory coupling (CRC), the HP is frequently analyzed in absence of concomitant recordings of respiratory movements (RESP). This study aims to assess the cardiovascular dynamics and CRC during postural challenge in athletes and non-athletes via joint symbolic analysis (JSA). METHODS A cross-sectional study was conducted in 50 men, aged between 20 and 40 yrs, divided into athletes (n = 25) and non-athletes (n = 25) groups. The electrocardiogram, blood pressure and RESP signals were recorded during 15 min in both supine position (REST) and after active postural maneuver (STAND). From the beat-to-beat series of HP, systolic arterial pressure (SAP) and RESP, we computed the time and frequency domain indexes and baroreflex sensitivity. The JSA was based on the definition of symbolic HP and RESP patterns and on the evaluation of the rate of their simultaneous occurrence in both HP and RESP series. RESULTS The JSA analysis was able to identify higher CRC strength at REST in athletes. Moreover, the response of CRC to STAND depended on the time scales of the analysis and was much more evident in athletes than in non-athletes, thus indicating a more reactive autonomic control in athletes. CONCLUSION Assessing CRC in athletes via JSA provides additional information compared to standard linear time and frequency domain tools likely due to the more relevant presence of nonlinearities in HP-RESP variability relationship.
Collapse
Affiliation(s)
- Raphael Martins de Abreu
- LUNEX University, International University of Health, Exercise & Sports S.A. 50, Department of Physiotherapy, Differdange, Luxembourg; LUNEX ASBL Luxembourg Health & Sport Sciences Research Institute, Differdange, Luxembourg; Federal University of São Carlos, Department of Physical Therapy, São Carlos, São Paulo, Brazil.
| | - Alberto Porta
- University of Milan, Department of Biomedical Sciences for Health, Milan, Italy; IRCCS Policlinico San Donato, Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, San Donato Milanese, Milan, Italy
| | - Patricia Rehder-Santos
- Federal University of São Carlos, Department of Physical Therapy, São Carlos, São Paulo, Brazil
| | - Beatrice Cairo
- University of Milan, Department of Biomedical Sciences for Health, Milan, Italy
| | - Camila Akemi Sakaguchi
- Appalachian State University, Department of Health, Leisure, and Exercise Science, NC, USA
| | | | - Étore De Favari Signini
- Federal University of São Carlos, Department of Physical Therapy, São Carlos, São Paulo, Brazil
| | | | - Aparecida Maria Catai
- Federal University of São Carlos, Department of Physical Therapy, São Carlos, São Paulo, Brazil
| |
Collapse
|
15
|
Kontaxis S, Lazaro J, Gil E, Laguna P, Bailon R. The Added Value of Nonlinear Cardiorespiratory Coupling Indices in the Assessment of Depression . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5473-5476. [PMID: 34892364 DOI: 10.1109/embc46164.2021.9631096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study investigates the differences in autonomic nervous system (ANS) function and stress response between patients with major depressive disorder (MDD) and healthy subjects by measuring changes in ANS biomarkers. ANS-related parameters are derived from various biosignals during a mental stress protocol consisting of a basal, stress, and recovery phase. The feature set consists of ANS biomarkers such as the heart rate (HR) derived from the electrocardiogram, the respiratory rate derived from the respiration signal, vascular parameters obtained from a model-based photoplethysmographic pulse waveform analysis, and cardiorespiratory coupling indices derived from the joint analysis of the heart rate variability (HRV) and respiratory signals. In particular, linear cardiorespiratory interactions are quantified by means of time-frequency coherence, while interactions of quadratic nonlinear nature between HRV and respiration are quantified by means of real wavelet biphase. The intra-subject difference of a feature value between two phases of the protocol, the so-called autonomic reactivity, is considered as a ANS biomarker as well. The performance of ANS biomarkers on discriminating MDD patients is evaluated using a classification pipeline. The results show that the most discriminative ANS biomarkers are related with differences in HR and autonomic reactivity of both vascular and nonlinear cardiorespiratory coupling indices. Differences in autonomic reactivity imply that MDD and healthy subjects differ in their ability to cope with stress. Considering only HR and vascular characteristics a linear support-vector machine classifier yields to accuracy 72.5% and F1-score 73.2%. However, taking into account the nonlinear cardiorespiratory coupling indices, the classification performance improves, yielding to accuracy 77.5% and F1-score 78.0%.Clinical relevance- Changes in the nonlinear properties of the cardiorespiratory system during stress may yield additional information on the assessment of depression.
Collapse
|
16
|
Zhang H, Wang X, Liu C, Li Y, Liu Y, Jiao Y, Liu T, Dong H, Wang J. Discrimination of Patients with Varying Degrees of Coronary Artery Stenosis by ECG and PCG Signals Based on Entropy. ENTROPY (BASEL, SWITZERLAND) 2021; 23:823. [PMID: 34203339 PMCID: PMC8304206 DOI: 10.3390/e23070823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Coronary heart disease (CHD) is the leading cause of cardiovascular death. This study aimed to propose an effective method for mining cardiac mechano-electric coupling information and to evaluate its ability to distinguish patients with varying degrees of coronary artery stenosis (VDCAS). Five minutes of electrocardiogram and phonocardiogram signals was collected synchronously from 191 VDCAS patients to construct heartbeat interval (RRI)-systolic time interval (STI), RRI-diastolic time interval (DTI), HR-corrected QT interval (QTcI)-STI, QTcI-DTI, Tpeak-Tend interval (TpeI)-STI, TpeI-DTI, Tpe/QT interval (Tpe/QTI)-STI, and Tpe/QTI-DTI series. Then, the cross sample entropy (XSampEn), cross fuzzy entropy (XFuzzyEn), joint distribution entropy (JDistEn), magnitude-squared coherence function, cross power spectral density, and mutual information were applied to evaluate the coupling of the series. Subsequently, support vector machine recursive feature elimination and XGBoost were utilized for feature selection and classification, respectively. Results showed that the joint analysis of XSampEn, XFuzzyEn, and JDistEn had the best ability to distinguish patients with VDCAS. The classification accuracy of severe CHD-mild-to-moderate CHD group, severe CHD-chest pain and normal coronary angiography (CPNCA) group, and mild-to-moderate CHD-CPNCA group were 0.8043, 0.7659, and 0.7500, respectively. The study indicates that the joint analysis of XSampEn, XFuzzyEn, and JDistEn can effectively capture the cardiac mechano-electric coupling information of patients with VDCAS, which can provide valuable information for clinicians to diagnose CHD.
Collapse
Affiliation(s)
- Huan Zhang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (H.Z.); (C.L.); (Y.L.); (Y.J.); (T.L.); (H.D.); (J.W.)
| | - Xinpei Wang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (H.Z.); (C.L.); (Y.L.); (Y.J.); (T.L.); (H.D.); (J.W.)
| | - Changchun Liu
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (H.Z.); (C.L.); (Y.L.); (Y.J.); (T.L.); (H.D.); (J.W.)
| | - Yuanyang Li
- Department of Medical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
- School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yuanyuan Liu
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (H.Z.); (C.L.); (Y.L.); (Y.J.); (T.L.); (H.D.); (J.W.)
| | - Yu Jiao
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (H.Z.); (C.L.); (Y.L.); (Y.J.); (T.L.); (H.D.); (J.W.)
| | - Tongtong Liu
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (H.Z.); (C.L.); (Y.L.); (Y.J.); (T.L.); (H.D.); (J.W.)
| | - Huiwen Dong
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (H.Z.); (C.L.); (Y.L.); (Y.J.); (T.L.); (H.D.); (J.W.)
| | - Jikuo Wang
- School of Control Science and Engineering, Shandong University, Jinan 250061, China; (H.Z.); (C.L.); (Y.L.); (Y.J.); (T.L.); (H.D.); (J.W.)
| |
Collapse
|
17
|
Frontal Alpha EEG Asymmetry Variation of Depression Patients Assessed by Entropy Measures and Lemple–Ziv Complexity. J Med Biol Eng 2021. [DOI: 10.1007/s40846-020-00594-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Frontal Alpha Complexity of Different Severity Depression Patients. JOURNAL OF HEALTHCARE ENGINEERING 2020; 2020:8854725. [PMID: 33029338 PMCID: PMC7528126 DOI: 10.1155/2020/8854725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022]
Abstract
Depression is a leading cause of disability worldwide, and objective biomarkers are required for future computer-aided diagnosis. This study aims to assess the variation of frontal alpha complexity among different severity depression patients and healthy subjects, therefore to explore the depressed neuronal activity and to suggest valid biomarkers. 69 depression patients (divided into three groups according to the disease severity) and 14 healthy subjects were employed to collect 3-channel resting Electroencephalogram signals. Sample entropy and Lempel-Ziv complexity methods were employed to evaluate the Electroencephalogram complexity among different severity depression groups and healthy group. Kruskal-Wallis rank test and group t-test were performed to test the difference significance among four groups and between each two groups separately. All indexes values show that depression patients have significantly increased complexity compared to healthy subjects, and furthermore, the complexity keeps increasing as the depression deepens. Sample entropy measures exhibit superiority in distinguishing mild depression from healthy group with significant difference even between nondepressive state group and healthy group. The results confirm the altered neuronal activity influenced by depression severity and suggest sample entropy and Lempel-Ziv complexity as promising biomarkers in future depression evaluation and diagnosis.
Collapse
|
19
|
Kontaxis S, Gil E, Marozas V, Lazaro J, Garcia E, Posadas-de Miguel M, Siddi S, Bernal ML, Aguilo J, Haro JM, de la Camara C, Laguna P, Bailon R. Photoplethysmographic Waveform Analysis for Autonomic Reactivity Assessment in Depression. IEEE Trans Biomed Eng 2020; 68:1273-1281. [PMID: 32960759 DOI: 10.1109/tbme.2020.3025908] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In the present study, a photoplethysmographic (PPG) waveform analysis for assessing differences in autonomic reactivity to mental stress between patients with Major Depressive Disorder (MDD) and healthy control (HC) subjects is presented. METHODS PPG recordings of 40 MDD and 40 HC subjects were acquired at basal conditions, during the execution of cognitive tasks, and at the post-task relaxation period. PPG pulses are decomposed into three waves (a main wave and two reflected waves) using a pulse decomposition analysis. Pulse waveform characteristics such as the time delay between the position of the main wave and reflected waves, the percentage of amplitude loss in the reflected waves, and the heart rate (HR) are calculated among others. The intra-subject difference of a feature value between two conditions is used as an index of autonomic reactivity. RESULTS Statistically significant individual differences from stress to recovery were found for HR and the percentage of amplitude loss in the second reflected wave ( A13) in both HC and MDD group. However, autonomic reactivity indices related to A13 reached higher values in HC than in MDD subjects (Cohen's [Formula: see text]), implying that the stress response in depressed patients is reduced. A statistically significant ( ) negative correlation ( r=-0.5) between depression severity scores and A13 was found. CONCLUSION A decreased autonomic reactivity is associated with higher degree of depression. SIGNIFICANCE Stress response quantification by dynamic changes in PPG waveform morphology can be an aid for the diagnosis and monitoring of depression.
Collapse
|
20
|
Montero-Nava JE, Pliego-Carrillo AC, Ledesma-Ramírez CI, Peña-Castillo MÁ, Echeverría JC, Pacheco-López G, Reyes-Lagos JJ. Analysis of the fetal cardio-electrohysterographic coupling at the third trimester of gestation in healthy women by Bivariate Phase-Rectified Signal Averaging. PLoS One 2020; 15:e0236123. [PMID: 32649719 PMCID: PMC7351174 DOI: 10.1371/journal.pone.0236123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The fetal cardio-electrohysterographic coupling (FCEC) is defined as the influence of the uterine electrical activity on fetal heart rate. FCEC has been mainly evaluated by visual analysis of cardiotocographic data during labor; however, this physiological phenomenon is poorly explored during the antenatal period. Here we propose an approach known as Bivariate Phase-Rectified Signal Averaging analysis (BPRSA) to assess such FCEC in the late third trimester of low-risk pregnancies. We hypothesized that BPRSA is a more reliable measure of FCEC than visual analysis and conventional measures such as cross-correlation, coherence, and cross-sample entropy. Additionally, by using BPRSA it is possible to detect FCEC even from the third trimester of pregnancy. MATERIAL AND METHODS Healthy pregnant women in the last third trimester of pregnancy (36.6 ± 1.8 gestational weeks) without any clinical manifestation of labor were enrolled in the Maternal and Childhood Research Center (CIMIGen), Mexico City (n = 37). Ten minutes of maternal electrohysterogram (EHG) and fetal heart rate (FHR) data were collected by a transabdominal non-invasive device. The FCEC was quantified by the coefficient of coherence, the maximum normalized cross-correlation, and the cross-sample entropy obtained either from the EHG and FHR raw signals or from the corresponding BPRSA graphs. RESULTS We found that by using BPRSA, the FCEC was detected in 92% cases (34/37) compared to 48% cases (18/37) using the coefficient of coherence between the EHG and FHR raw signals. Also, BPRSA indicated FCEC in 82% cases (30/37) compared to 30% cases (11/37) using the maximum normalized cross-correlation. By comparing the analyses, the BPRSA evidenced higher FCEC in comparison to the coupling estimated from the raw EHG and FHR signals. CONCLUSIONS Our results support the consideration that in the third trimester of pregnancy, the fetal heart rate is also influenced by uterine activity despite the emerging manifestation of this activity before labor. To quantify FCEC, the BPRSA can be applied to FHR and EHG transabdominal signals acquired in the third trimester of pregnancy.
Collapse
Affiliation(s)
| | | | | | - Miguel Ángel Peña-Castillo
- Metropolitan Autonomous University (UAM), Campus Iztapalapa, Basic Sciences and Engineering Division, Mexico City, Mexico
| | - Juan Carlos Echeverría
- Metropolitan Autonomous University (UAM), Campus Iztapalapa, Basic Sciences and Engineering Division, Mexico City, Mexico
| | - Gustavo Pacheco-López
- Metropolitan Autonomous University (UAM), Campus Lerma, Biological and Health Sciences Division, Lerma, Mexico
| | | |
Collapse
|
21
|
Valderas MT, Bolea J, Laguna P, Bailón R, Vallverdú M. Mutual information between heart rate variability and respiration for emotion characterization. Physiol Meas 2019; 40:084001. [DOI: 10.1088/1361-6579/ab310a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|