1
|
Reis J, Buguet A, Radomski M, Stella AB, Vásquez TC, Spencer PS. Neurological patients confronting climate change: A potential role for the glymphatic system and sleep. J Neurol Sci 2024; 458:122900. [PMID: 38310733 DOI: 10.1016/j.jns.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
Interest in the health consequences of climate change (global warming, heatwaves) has increased in the neurological community. This review addresses the impact of elevated ambient temperatures and heatwaves on patients with neurological and mental health disorders, including multiple sclerosis, synucleinopathies, dementia, epilepsies, mental health, and stroke. Patients with such conditions are highly vulnerable during heatwaves because of functional disorders affecting sleep, thermoregulation, autonomic system reactivity, mood, and cognitive ability. Several medications may also increase the risk of heatstroke. Special attention is devoted to the involvement of common underlying mechanisms, such as sleep and the glymphatic system. Disease prevention and patient care during heatwaves are major issues for caregivers. Beyond the usual recommendations for individuals, we favor artificially induced acclimation to heat, which provides preventive benefits with proven efficacy for healthy adults.
Collapse
Affiliation(s)
- Jacques Reis
- Department of Neurology, University Hospital of Strasbourg, 67000 Strasbourg, France; Association RISE, 3 rue du Loir, 67205 Oberhausbergen, France.
| | - Alain Buguet
- Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, 69622 Villeurbanne, France; 21 rue de Champfranc, 38630 Les Avenières Veyrins-Thuellin, France
| | - Manny Radomski
- Emeritus at the University of Toronto, Apt n° 2501, 2010 Islington Avenue, Toronto, ON M9P3S8, Canada
| | - Alex Buoite Stella
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Teresa Corona Vásquez
- División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico; Clinical Neurodegenerative Diseases Laboratory, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
2
|
Buguet A, Radomski MW, Reis J, Spencer PS. Heatwaves and human sleep: Stress response versus adaptation. J Neurol Sci 2023; 454:120862. [PMID: 37922826 DOI: 10.1016/j.jns.2023.120862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The World Meteorological Organization considers a heatwave as "a period of statistically unusual hot weather persisting for a number of days and nights". Accompanying the ongoing global climate change, sharp heatwave bouts occur worldwide, growing in frequency and intensity, and beginning earlier in the season. Heatwaves exacerbate the risk of heat-related illnesses, hence human morbidity and mortality, particularly in vulnerable elderly and children. Heat-related illnesses present a continuum from normothermic (prickly heat, heat edema, heat cramps, heat tetany) to hyperthermic syndromes (from heat syncope and heat exhaustion to lethal heat stroke). Heat stroke may occur through passive heating and/or exertional exercise. "Normal sleep", such as observed in temperate conditions, is altered during heatwaves. Brisk excessive heat bouts shorten and fragment human sleep. Particularly, deep N3 sleep (formerly slow-wave sleep) and REM sleep are depleted, such as in other stressful situations. The resultant sleep loss is deleterious to cognitive performance, emotional brain function, behavior, and susceptibility to chronic health conditions and infectious diseases. Our group has previously demonstrated that sleep constitutes an adaptive mechanism during climatic heat acclimatization. In parallel, artificial heat acclimation procedures have been proposed in sports and military activities, and for the elderly. Other preventive actions should be considered, such as education and urban heat island cooling (vegetation, white paint), thus avoiding energy-hungry air conditioning.
Collapse
Affiliation(s)
- Alain Buguet
- Invited Scientist, Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, 69622 Villeurbanne, France.
| | - Manny W Radomski
- Professor Emeritus at the University of Toronto, Apt n° 2501, 2010 Islington Avenue, Toronto, ON M9P3S8, Canada
| | - Jacques Reis
- University of Strasbourg, 67000 Strasbourg, France; Association RISE, 3 rue du Loir, 67205 Oberhausbergen, France
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Moran DS, DeGroot DW, Potter AW, Charkoudian N. Beating the heat: military training and operations in the era of global warming. J Appl Physiol (1985) 2023; 135:60-67. [PMID: 37199784 PMCID: PMC10281783 DOI: 10.1152/japplphysiol.00229.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
Global climate change has resulted in an increase in the number and intensity of environmental heat waves, both in areas traditionally associated with hot temperatures and in areas where heat waves did not previously occur. For military communities around the world, these changes pose progressively increasing risks of heat-related illnesses and interference with training sessions. This is a significant and persistent "noncombat threat" to both training and operational activities of military personnel. In addition to these important health and safety concerns, there are broader implications in terms of the ability of worldwide security forces to effectively do their job (particularly in areas that historically already have high ambient temperatures). In the present review, we attempt to quantify the impact of climate change on various aspects of military training and performance. We also summarize ongoing research efforts designed to minimize and/or prevent heat injuries and illness. In terms of future approaches, we propose the need to "think outside the box" for a more effective training/schedule paradigm. One approach may be to investigate potential impacts of a reversal of sleep-wake cycles during basic training during the hot months of the year, to minimize the usual increase in heat-related injuries, and to enhance the capacity for physical training and combat performance. Regardless of which approaches are taken, a central feature of successful present and future interventions will be that they are rigorously tested using integrative physiological approaches.
Collapse
Affiliation(s)
- Daniel S Moran
- School of Health Sciences, Department of Health Systems Management, Ariel University, Ariel, Israel
| | | | - Adam W Potter
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Nisha Charkoudian
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| |
Collapse
|
4
|
Short-term heat acclimation protocols for an aging population: Systematic review. PLoS One 2023; 18:e0282038. [PMID: 36862716 PMCID: PMC9980817 DOI: 10.1371/journal.pone.0282038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION Elderly and sedentary individuals are particularly vulnerable to heat related illness. Short-term heat acclimation (STHA) can decrease both the physical and mental stress imposed on individuals performing tasks in the heat. However, the feasibility and efficacy of STHA protocols in an older population remains unclear despite this population being particularly vulnerable to heat illness. The aim of this systematic review was to investigate the feasibility and efficacy of STHA protocols (≤twelve days, ≥four days) undertaken by participants over fifty years of age. METHODS Academic Search Premier, CINAHL Complete, MEDLINE, APA PsycInfo, and SPORTDiscus were searched for peer reviewed articles. The search terms were; (heat* or therm*) N3 (adapt* or acclimati*) AND old* or elder* or senior* or geriatric* or aging or ageing. Only studies using primary empirical data and which included participants ≥50 years of age were eligible. Extracted data includes participant demographics (sample size, gender, age, height, weight, BMI and [Formula: see text]), acclimation protocol details (acclimation activity, frequency, duration and outcome measures taken) and feasibility and efficacy outcomes. RESULTS Twelve eligible studies were included in the systematic review. A total of 179 participants took part in experimentation, 96 of which were over 50 years old. Age ranged from 50 to 76. All twelve of the studies involved exercise on a cycle ergometer. Ten out of twelve protocols used a percentage of [Formula: see text] or [Formula: see text] to determine the target workload, which ranged from 30% to 70%. One study-controlled workload at 6METs and one implemented an incremental cycling protocol until Tre was reached +0.9°C. Ten studies used an environmental chamber. One study compared hot water immersion (HWI) to an environmental chamber while the remaining study used a hot water perfused suit. Eight studies reported a decrease in core temperature following STHA. Five studies demonstrated post-exercise changes in sweat rates and four studies showed decreases in mean skin temperature. The differences reported in physiological markers suggest that STHA is viable in an older population. CONCLUSION There remains limited data on STHA in the elderly. However, the twelve studies examined suggest that STHA is feasible and efficacious in elderly individuals and may provide preventative protection to heat exposures. Current STHA protocols require specialised equipment and do not cater for individuals unable to exercise. Passive HWI may provide a pragmatic and affordable solution, however further information in this area is required.
Collapse
|
5
|
Dennis MC, Goods PSR, Binnie MJ, Girard O, Wallman KE, Dawson BT, Peeling P. Taking the plunge: When is best for hot water immersion to complement exercise in heat and hypoxia. J Sports Sci 2022; 40:2055-2061. [PMID: 36263975 DOI: 10.1080/02640414.2022.2133390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This investigation assessed the psycho-physiological and performance effects of hot water immersion (HWI) implemented either before or after a repeated-sprint training in hypoxia (RSH) session conducted in the heat. Ten participants completed three RSH trials (3 × 10 × 5-s sprints), conducted at 40°C and simulated altitude of 3000 m. A 30-min monitoring period preceded and followed all exercise sessions. In PRE, the pre-exercise period was HWI, and the post-exercise period was seated rest in temperate conditions. This combination was reversed in POST. In CON, participants were seated in temperate conditions for both periods. Compared to CON, PRE elicited a reduction in power output during each repeated-sprint set (14.8-16.2%, all p < 0.001), and a significantly higher core temperature (Tc) during the pre-exercise period and throughout the exercise session (p < 0.001 and p = 0.025, respectively). In POST, power output and Tc until the end of exercise were similar to CON, with Tc higher at the conclusion of the post-exercise period (p < 0.001). Time across the entire protocol spent ≥38.5°C Tc was significantly longer in PRE (48.1 ± 22.5 min) than POST (31.0 ± 11.3 min, p = 0.05) and CON (15.8 ± 16.3 min, p < 0.001). Employing HWI following RSH conducted in the heat provides effective outcomes regarding physiological strain and cycling performance when compared to pre-exercise or no HWI.
Collapse
Affiliation(s)
- Myles C Dennis
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, WA, Australia, 6009.,Department of Physiology, Western Australian Institute of Sport, WA, Australia, 6010
| | - Paul S R Goods
- Department of Physiology, Western Australian Institute of Sport, WA, Australia, 6010.,Murdoch Applied Sports Science Laboratory, Murdoch University, WA, Australia, 6150.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia, 6150
| | - Martyn J Binnie
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, WA, Australia, 6009.,Department of Physiology, Western Australian Institute of Sport, WA, Australia, 6010
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, WA, Australia, 6009
| | - Karen E Wallman
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, WA, Australia, 6009
| | - Brian T Dawson
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, WA, Australia, 6009
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, WA, Australia, 6009.,Department of Physiology, Western Australian Institute of Sport, WA, Australia, 6010
| |
Collapse
|
6
|
McIntyre RD, Zurawlew MJ, Oliver SJ, Cox AT, Mee JA, Walsh NP. A comparison of heat acclimation by post-exercise hot water immersion and exercise in the heat. J Sci Med Sport 2021; 24:729-734. [DOI: 10.1016/j.jsams.2021.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022]
|
7
|
Pokora I, Sadowska-Krępa E, Wolowski Ł, Wyderka P, Michnik A, Drzazga Z. The Effect of Medium-Term Sauna-Based Heat Acclimation (MPHA) on Thermophysiological and Plasma Volume Responses to Exercise Performed under Temperate Conditions in Elite Cross-Country Skiers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6906. [PMID: 34199101 PMCID: PMC8297353 DOI: 10.3390/ijerph18136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
The influence of a series of ten sauna baths (MPHA) on thermophysiological and selected hematological responses in 14 elite cross-country skiers to a submaximal endurance exercise test performed under thermoneutral environmental conditions was studied. Thermal and physiological variables were measured before and after the exercise test, whereas selected hematological indices were studied before, immediately after, and during recovery after a run, before (T1) and after sauna baths (T2). MPHA did not influence the baseline internal, body, and skin temperatures. There was a decrease in the resting heart rate (HR: p = 0.001) and physiological strain (PSI: p = 0.052) after MPHA and a significant effect of MPHA on systolic blood pressure (p = 0.03), hematological indices, and an exercise effect but no combined effect of treatments and exercise on the tested variables. A positive correlation was reported between PSI and total protein (%ΔTP) in T2 and a negative between plasma volume (%ΔPV) and mean red cellular volume (%ΔMCV) in T1 and T2 in response to exercise and a positive one during recovery. This may suggest that MPHA has a weak influence on body temperatures but causes a moderate decrease in PSI and modifications of plasma volume restoration in response to exercise under temperate conditions in elite athletes.
Collapse
Affiliation(s)
- Ilona Pokora
- Department of Physiological-Medical Sciences, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland;
| | - Ewa Sadowska-Krępa
- Department of Physiological-Medical Sciences, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland;
| | - Łukasz Wolowski
- Doctoral Studies, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (Ł.W.); (P.W.)
| | - Piotr Wyderka
- Doctoral Studies, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland; (Ł.W.); (P.W.)
| | - Anna Michnik
- The Silesian Centre for Education and Interdisciplinary Research, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (A.M.); (Z.D.)
| | - Zofia Drzazga
- The Silesian Centre for Education and Interdisciplinary Research, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (A.M.); (Z.D.)
| |
Collapse
|
8
|
Adams WM, Hosokawa Y, Casa DJ, Périard JD, Racinais S, Wingo JE, Yeargin SW, Scarneo-Miller SE, Kerr ZY, Belval LN, Alosa D, Csillan D, LaBella C, Walker L. Roundtable on Preseason Heat Safety in Secondary School Athletics: Heat Acclimatization. J Athl Train 2021; 56:352-361. [PMID: 33878177 DOI: 10.4085/1062-6050-596-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To provide best-practice recommendations for developing and implementing heat-acclimatization strategies in secondary school athletics. DATA SOURCES An extensive literature review on topics related to heat acclimatization and heat acclimation was conducted by a group of content experts. Using the Delphi method, action-oriented recommendations were developed. CONCLUSIONS A period of heat acclimatization consisting of ≥14 consecutive days should be implemented at the start of fall preseason training or practices for all secondary school athletes to mitigate the risk of exertional heat illness. The heat-acclimatization guidelines should outline specific actions for secondary school athletics personnel to use, including the duration of training, the number of training sessions permitted per day, and adequate rest periods in a cool environment. Further, these guidelines should include sport-specific and athlete-specific recommendations, such as phasing in protective equipment and reintroducing heat acclimatization after periods of inactivity. Heat-acclimatization guidelines should be clearly detailed in the secondary school's policy and procedures manual and disseminated to all stakeholders. Heat-acclimatization guidelines, when used in conjunction with current best practices surrounding the prevention, management, and care of secondary school student-athletes with exertional heat stroke, will optimize their health and safety.
Collapse
Affiliation(s)
- William M Adams
- Hydration, Environment, and Thermal Stress Lab, Department of Kinesiology, University of North Carolina at Greensboro
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Douglas J Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - Sebastien Racinais
- Research and Scientific Support Department, ASPETAR Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | | | - Susan W Yeargin
- Department of Exercise Science, University of South Carolina, Columbia
| | | | - Zachary Y Kerr
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| | - Luke N Belval
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas
| | - Denise Alosa
- Athletic Medicine, South Burlington School District, Burlington, VT.,College of Nursing and Health Science, University of Vermont, Burlington
| | - David Csillan
- Department of Physical Therapy, Princeton Orthopedic Associates, NJ
| | - Cynthia LaBella
- Department of Pediatrics, Northwestern University Feinberg School of Medicine Institute for Sports Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | | |
Collapse
|
9
|
Greenfield AM, Pereira FG, Boyer WR, Apkarian MR, Kuennen MR, Gillum TL. Short-term hot water immersion results in substantial thermal strain and partial heat acclimation; comparisons with heat-exercise exposures. J Therm Biol 2021; 97:102898. [PMID: 33863451 DOI: 10.1016/j.jtherbio.2021.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/30/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To examine the effectiveness of hot water immersion (HWI) as a heat acclimation strategy in comparison to time and temperature matched, exercise-heat acclimation (EHA). METHODS 8 males performed heat stress tests (HST) (45 min of cycling at 50% of VO2max in 40 °C, 40% RH) before and after heat acclimation sessions. Acclimation sessions were either three consecutive bouts of HWI (40 min of submersion at 40 °C) or EHA (40 min of cycling at 50% VO2max in 40 °C, 40% RH). RESULTS Average change in tympanic temperature (TTympanic) was significantly higher following HWI (2.1 °C ± 0.4) compared to EHA (1.5 °C ± 0.4) (P < 0.05). Decreases in peak heart rate (HR) (HWI: -10 bpm ± 8; EHA: -6 ± 7), average HR (-7 bpm ± 6; -3 ± 4), and average core temperature (-0.4 °C ± 0.3; -0.2 ± 0.4) were evident following acclimation (P < 0.05), but not different between interventions (P > 0.05). Peak rate of perceived exertion (RPEPeak) decreased for HWI and EHA (P < 0.05). Peak thermal sensation (TSPeak) decreased following HWI (P < 0.05) but was not different between interventions (P > 0.05). Plasma volume increased in both intervention groups (HWI: 5.9% ± 5.1; EHA: 5.4% ± 3.7) but was not statistically different (P > 0.05). CONCLUSION HWI induced significantly greater thermal strain compared to EHA at equivalent temperatures during time-matched exposures. However, the greater degree of thermal strain did not result in between intervention differences for cardiovascular, thermoregulatory, or perceptual variables. Findings suggest three HWI sessions may be a potential means to lower HR, TCore, and perceptual strain during exercise in the heat.
Collapse
Affiliation(s)
- Andrew M Greenfield
- Department of Kinesiology, California Baptist University, 8432 Magnolia Ave, Riverside, CA, 92504, USA.
| | - Felipe Gorini Pereira
- Department of Kinesiology, California Baptist University, 8432 Magnolia Ave, Riverside, CA, 92504, USA.
| | - William R Boyer
- Department of Kinesiology, California Baptist University, 8432 Magnolia Ave, Riverside, CA, 92504, USA.
| | - Marc R Apkarian
- Department of Kinesiology and Health Science, Biola University, 13800 Biola Ave, La Mirada, CA, 90639, USA.
| | - Matthew R Kuennen
- Department of Exercise Science, High Point University, 1 N. University Parkway, High Point, NC, 27268, USA.
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, 8432 Magnolia Ave, Riverside, CA, 92504, USA.
| |
Collapse
|
10
|
Meigal AY, Tretjakova OG, Gerasimova-Meigal LI, Sayenko IV. Program of Seven 45-min Dry Immersion Sessions Improves Choice Reaction Time in Parkinson's Disease. Front Physiol 2021; 11:621198. [PMID: 33519524 PMCID: PMC7841462 DOI: 10.3389/fphys.2020.621198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/11/2020] [Indexed: 01/26/2023] Open
Abstract
The study hypothesis held that in subjects with Parkinson's disease (PD), the reaction time (RT) tests of the higher cognition demand would have more readily improved under the program of analog microgravity (μG) modeled with "dry" immersion (DI). To test this hypothesis, 10 subjects with PD have passed through a program of seven DI sessions (each 45 min long) within 25-30 days, with overall μG dose 5 1/4 h. Five patients were enrolled as controls, without DI (noDI group). Simple RT (SRT), disjunctive RT (DRT), and choice RT (CRT) were assessed in four study points: before the DI program (preDI), 1 day after the DI program (postDI), 2 weeks after the DI program (DI2w), and 2 months after the DI program (DI2m). The motor time (MT) was assessed with the tapping test (TT). Additionally, signal detection time (SDT) and central processing time (CPT) were extracted from the data. Before the program of DI, the RT tests are in accordance with their cognition load: SRT (284 ± 37 ms), DRT (338 ± 38 ms), and CRT (540 ± 156 ms). In accordance with the hypothesis, CRT and DRT have improved under DI by, respectively, 20 and 8% at the study point "DI2w," whereas SRT, SDT, and MT did not change (<5% in the preDI point, p > 0.05). Thus, the program of DI provoked RT improvement specifically in the cognitively loaded tasks, in a "dose of cognition-reaction" manner. The accuracy of reaction has changed in none of the RT tests. The neurophysiologic, hormonal/neuroendocrine, behavioral, neural plasticity, and acclimation mechanisms may have contributed to such a result.
Collapse
Affiliation(s)
- Alexander Yu. Meigal
- Laboratory of Novel Methods in Physiology, Institute of Higher Biomedical Technologies, Petrozavodsk State University, Petrozavodsk, Russia
| | - Olesya G. Tretjakova
- Laboratory of Novel Methods in Physiology, Institute of Higher Biomedical Technologies, Petrozavodsk State University, Petrozavodsk, Russia
| | - Liudmila I. Gerasimova-Meigal
- Laboratory of Novel Methods in Physiology, Institute of Higher Biomedical Technologies, Petrozavodsk State University, Petrozavodsk, Russia
| | - Irina V. Sayenko
- State Scientific Center, “Institute of Biomedical Problems,” Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Maloy W, Hulsopple C. Novel Use of Water Immersion in the Management of Exertional Heat Stress. TRANSLATIONAL JOURNAL OF THE AMERICAN COLLEGE OF SPORTS MEDICINE 2021. [DOI: 10.1249/tjx.0000000000000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Lim CL. Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7795. [PMID: 33114437 PMCID: PMC7662600 DOI: 10.3390/ijerph17217795] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
The international community has recognized global warming as an impending catastrophe that poses significant threat to life on earth. In response, the signatories of the Paris Agreement (2015) have committed to limit the increase in global mean temperature to < 1.5 °C from pre-industry period, which is defined as 1950-1890. Considering that the protection of human life is a central focus in the Paris Agreement, the naturally endowed properties of the human body to protect itself from environmental extremes should form the core of an integrated and multifaceted solution against global warming. Scholars believe that heat and thermoregulation played important roles in the evolution of life and continue to be a central mechanism that allows humans to explore, labor and live in extreme conditions. However, the international effort against global warming has focused primarily on protecting the environment and on the reduction of greenhouse gases by changing human behavior, industrial practices and government policies, with limited consideration given to the nature and design of the human thermoregulatory system. Global warming is projected to challenge the limits of human thermoregulation, which can be enhanced by complementing innate human thermo-plasticity with the appropriate behavioral changes and technological innovations. Therefore, the primary aim of this review is to discuss the fundamental concepts and physiology of human thermoregulation as the underlying bases for human adaptation to global warming. Potential strategies to extend human tolerance against environmental heat through behavioral adaptations and technological innovations will also be discussed. An important behavioral adaptation postulated by this review is that sleep/wake cycles would gravitate towards a sub-nocturnal pattern, especially for outdoor activities, to avoid the heat in the day. Technologically, the current concept of air conditioning the space in the room would likely steer towards the concept of targeted body surface cooling. The current review was conducted using materials that were derived from PubMed search engine and the personal library of the author. The PubMed search was conducted using combinations of keywords that are related to the theme and topics in the respective sections of the review. The final set of articles selected were considered "state of the art," based on their contributions to the strength of scientific evidence and novelty in the domain knowledge on human thermoregulation and global warming.
Collapse
Affiliation(s)
- Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
13
|
Song K, Richter M, Waxenbaum J, Samblanet K, Lu M. Novel Acclimatization and Acclimation Strategies for Hot Climates. Curr Sports Med Rep 2020; 19:142-145. [PMID: 32282459 DOI: 10.1249/jsr.0000000000000707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exercising in hot, humid temperatures increases the risk for heat-related illnesses, ranging from mild heat edema to severe heat stroke. With increasing globalization in the world of sports, athletes are sometimes expected to compete in unforgiving conditions that expose them to these risks. In an effort to improve exercise capacity and reduce the risk of serious heat injury, many athletes are recommended to undergo heat acclimatization program prior to competing in climates with elevated average temperature. This article will look at current recommendations as well as studies on differing techniques for acclimatization and acclimation, with hopes to provide guidance for the modern-day clinician and athletes.
Collapse
Affiliation(s)
- Kaoru Song
- Tripler Army Medical Center, Honolulu, HI
| | | | | | | | | |
Collapse
|
14
|
Gibson OR, James CA, Mee JA, Willmott AG, Turner G, Hayes M, Maxwell NS. Heat alleviation strategies for athletic performance: A review and practitioner guidelines. Temperature (Austin) 2019; 7:3-36. [PMID: 32166103 PMCID: PMC7053966 DOI: 10.1080/23328940.2019.1666624] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
International competition inevitably presents logistical challenges for athletes. Events such as the Tokyo 2020 Olympic Games require further consideration given historical climate data suggest athletes will experience significant heat stress. Given the expected climate, athletes face major challenges to health and performance. With this in mind, heat alleviation strategies should be a fundamental consideration. This review provides a focused perspective of the relevant literature describing how practitioners can structure male and female athlete preparations for performance in hot, humid conditions. Whilst scientific literature commonly describes experimental work, with a primary focus on maximizing magnitudes of adaptive responses, this may sacrifice ecological validity, particularly for athletes whom must balance logistical considerations aligned with integrating environmental preparation around training, tapering and travel plans. Additionally, opportunities for sophisticated interventions may not be possible in the constrained environment of the athlete village or event arenas. This review therefore takes knowledge gained from robust experimental work, interprets it and provides direction on how practitioners/coaches can optimize their athletes' heat alleviation strategies. This review identifies two distinct heat alleviation themes that should be considered to form an individualized strategy for the athlete to enhance thermoregulatory/performance physiology. First, chronic heat alleviation techniques are outlined, these describe interventions such as heat acclimation, which are implemented pre, during and post-training to prepare for the increased heat stress. Second, acute heat alleviation techniques that are implemented immediately prior to, and sometimes during the event are discussed. Abbreviations: CWI: Cold water immersion; HA: Heat acclimation; HR: Heart rate; HSP: Heat shock protein; HWI: Hot water immersion; LTHA: Long-term heat acclimation; MTHA: Medium-term heat acclimation; ODHA: Once-daily heat acclimation; RH: Relative humidity; RPE: Rating of perceived exertion; STHA: Short-term heat acclimation; TCORE: Core temperature; TDHA: Twice-daily heat acclimation; TS: Thermal sensation; TSKIN: Skin temperature; V̇O2max: Maximal oxygen uptake; WGBT: Wet bulb globe temperature.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Carl A. James
- Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Jessica A. Mee
- School of Sport and Exercise Sciences, University of Worcester, Worcester, UK
| | - Ashley G.B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Gareth Turner
- Bisham Abbey National High-Performance Centre, English Institute of Sport, EIS Performance Centre, Marlow, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| |
Collapse
|