1
|
Xu F, Jin H, Liu L, Yang Y, Cen J, Wu Y, Chen S, Sun D. Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors. MICROSYSTEMS & NANOENGINEERING 2024; 10:96. [PMID: 39006908 PMCID: PMC11239895 DOI: 10.1038/s41378-024-00692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 07/16/2024]
Abstract
Heart-on-a-chip (HoC) has emerged as a highly efficient, cost-effective device for the development of engineered cardiac tissue, facilitating high-throughput testing in drug development and clinical treatment. HoC is primarily used to create a biomimetic microphysiological environment conducive to fostering the maturation of cardiac tissue and to gather information regarding the real-time condition of cardiac tissue. The development of architectural design and advanced manufacturing for these "3S" components, scaffolds, stimulation, and sensors is essential for improving the maturity of cardiac tissue cultivated on-chip, as well as the precision and accuracy of tissue states. In this review, the typical structures and manufacturing technologies of the "3S" components are summarized. The design and manufacturing suggestions for each component are proposed. Furthermore, key challenges and future perspectives of HoC platforms with integrated "3S" components are discussed. Architecture design concepts of scaffolds, stimulation and sensors in chips.
Collapse
Affiliation(s)
- Feng Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Lingling Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Yuanyuan Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Jianzheng Cen
- Guangdong Provincial People’s Hospital, Guangzhou, 510080 China
| | - Yaobin Wu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
2
|
Janssens JV, Raaijmakers AJA, Weeks KL, Bell JR, Mellor KM, Curl CL, Delbridge LMD. The cardiomyocyte origins of diastolic dysfunction: cellular components of myocardial "stiffness". Am J Physiol Heart Circ Physiol 2024; 326:H584-H598. [PMID: 38180448 DOI: 10.1152/ajpheart.00334.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The impaired ability of the heart to relax and stretch to accommodate venous return is generally understood to represent a state of "diastolic dysfunction" and often described using the all-purpose noun "stiffness." Despite the now common qualitative usage of this term in fields of cardiac patho/physiology, the specific quantitative concept of stiffness as a molecular and biophysical entity with real practical interpretation in healthy and diseased hearts is sometimes obscure. The focus of this review is to characterize the concept of cardiomyocyte stiffness and to develop interpretation of "stiffness" attributes at the cellular and molecular levels. Here, we consider "stiffness"-related terminology interpretation and make links between cardiomyocyte stiffness and aspects of functional and structural cardiac performance. We discuss cross bridge-derived stiffness sources, considering the contributions of diastolic myofilament activation and impaired relaxation. This includes commentary relating to the role of cardiomyocyte Ca2+ flux and Ca2+ levels in diastole, the troponin-tropomyosin complex role as a Ca2+ effector in diastole, the myosin ADP dissociation rate as a modulator of cross bridge attachment and regulation of cross-bridge attachment by myosin binding protein C. We also discuss non-cross bridge-derived stiffness sources, including the titin sarcomeric spring protein, microtubule and intermediate filaments, and cytoskeletal extracellular matrix interactions. As the prevalence of conditions involving diastolic heart failure has escalated, a more sophisticated understanding of the molecular, cellular, and tissue determinants of cardiomyocyte stiffness offers potential to develop imaging and molecular intervention tools.
Collapse
Affiliation(s)
- Johannes V Janssens
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Monash University, Parkville, Victoria, Australia
| | - James R Bell
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Claire L Curl
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Dowrick JM, Tran K, Garrett AS, Anderson AJ, Nielsen PMF, Taberner AJ, Han JC. Work-loop contractions reveal that the afterload-dependent time course of cardiac Ca 2+ transients is modulated by preload. J Appl Physiol (1985) 2022; 133:663-675. [PMID: 35771221 PMCID: PMC9762964 DOI: 10.1152/japplphysiol.00137.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Preload and afterload dictate the dynamics of the cyclical work-loop contraction that the heart undergoes in vivo. Cellular Ca2+ dynamics drive contraction, but the effects of afterload alone on the Ca2+ transient are inconclusive. To our knowledge, no study has investigated whether the putative afterload dependence of the Ca2+ transient is preload dependent. This study is designed to provide the first insight into the Ca2+ handling of cardiac trabeculae undergoing work-loop contractions, with the aim to examine whether the conflicting afterload dependency of the Ca2+ transient can be accounted for by considering preload under isometric and physiological work-loop contractions. Thus, we subjected ex vivo rat right-ventricular trabeculae, loaded with the fluorescent dye Fura-2, to work-loop contractions over a wide range of afterloads at two preloads while measuring stress, length changes, and Ca2+ transients. Work-loop control was implemented with a real-time Windkessel model to mimic the contraction patterns of the heart in vivo. We extracted a range of metrics from the measured steady-state twitch stress and Ca2+ transients, including the amplitudes, time courses, rates of rise, and integrals. Results show that parameters of stress were afterload and preload dependent. In contrast, the parameters associated with Ca2+ transients displayed a mixed dependence on afterload and preload. Most notably, its time course was afterload dependent, an effect augmented at the greater preload. This study reveals that the afterload dependence of cardiac Ca2+ transients is modulated by preload, which brings the study of Ca2+ transients during isometric contractions into question when aiming to understand physiological Ca2+ handling.NEW & NOTEWORTHY This study is the first examination of Ca2+ handling in trabeculae undergoing work-loop contractions. These data reveal that reducing preload diminishes the influence of afterload on the decay phase of the cardiac Ca2+ transient. This is significant as it reconciles inconsistencies in the literature regarding the influence of external loads on cardiac Ca2+ handling. Furthermore, these findings highlight discrepancies between Ca2+ handling during isometric and work-loop contractions in cardiac trabeculae operating at their optimal length.
Collapse
Affiliation(s)
- Jarrah M. Dowrick
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kenneth Tran
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Amy S. Garrett
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alex J. Anderson
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Poul M. F. Nielsen
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,2Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Andrew J. Taberner
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,2Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - June-Chiew Han
- 1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Nayir S, Lacour SP, Kucera JP. Active force generation contributes to the complexity of spontaneous activity and to the response to stretch of murine cardiomyocyte cultures. J Physiol 2022; 600:3287-3312. [PMID: 35679256 PMCID: PMC9541716 DOI: 10.1113/jp283083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract Cardiomyocyte cultures exhibit spontaneous electrical and contractile activity, as in a natural cardiac pacemaker. In such preparations, beat rate variability exhibits features similar to those of heart rate variability in vivo. Mechanical deformations and forces feed back on the electrical properties of cardiomyocytes, but it is not fully elucidated how this mechano‐electrical interplay affects beating variability in such preparations. Using stretchable microelectrode arrays, we assessed the effects of the myosin inhibitor blebbistatin and the non‐selective stretch‐activated channel blocker streptomycin on beating variability and on the response of neonatal or fetal murine ventricular cell cultures against deformation. Spontaneous electrical activity was recorded without stretch and upon predefined deformation protocols (5% uniaxial and 2% equibiaxial strain, applied repeatedly for 1 min every 3 min). Without stretch, spontaneous activity originated from the edge of the preparations, and its site of origin switched frequently in a complex manner across the cultures. Blebbistatin did not change mean beat rate, but it decreased the spatial complexity of spontaneous activity. In contrast, streptomycin did not exert any manifest effects. During the deformation protocols, beat rate increased transiently upon stretch but, paradoxically, also upon release. Blebbistatin attenuated the response to stretch, whereas this response was not affected by streptomycin. Therefore, our data support the notion that in a spontaneously firing network of cardiomyocytes, active force generation, rather than stretch‐activated channels, is involved mechanistically in the complexity of the spatiotemporal patterns of spontaneous activity and in the stretch‐induced acceleration of beating.
![]() Key points Monolayer cultures of cardiac cells exhibit spontaneous electrical and contractile activity, as in a natural cardiac pacemaker. Beating variability in these preparations recapitulates the power‐law behaviour of heart rate variability in vivo. However, the effects of mechano‐electrical feedback on beating variability are not yet fully understood. Using stretchable microelectrode arrays, we examined the effects of the contraction uncoupler blebbistatin and the non‐specific stretch‐activated channel blocker streptomycin on beating variability and on stretch‐induced changes of beat rate. Without stretch, blebbistatin decreased the spatial complexity of beating variability, whereas streptomycin had no effects. Both stretch and release increased beat rate transiently; blebbistatin attenuated the increase of beat rate upon stretch, whereas streptomycin had no effects. Active force generation contributes to the complexity of spatiotemporal patterns of beating variability and to the increase of beat rate upon mechanical deformation. Our study contributes to the understanding of how mechano‐electrical feedback influences heart rate variability.
Collapse
Affiliation(s)
- Seyma Nayir
- Department of Physiology, University of Bern, Bern, Switzerland
| | | | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Rhoden A, Friedrich FW, Brandt T, Raabe J, Schweizer M, Meisterknecht J, Wittig I, Ulmer BM, Klampe B, Uebeler J, Piasecki A, Lorenz K, Eschenhagen T, Hansen A, Cuello F. Sulforaphane exposure impairs contractility and mitochondrial function in three-dimensional engineered heart tissue. Redox Biol 2021; 41:101951. [PMID: 33831709 PMCID: PMC8056268 DOI: 10.1016/j.redox.2021.101951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Sulforaphane (SFN) is a phytochemical compound extracted from cruciferous plants, like broccoli or cauliflower. Its isothiocyanate group renders SFN reactive, thus allowing post-translational modification of cellular proteins to regulate their function with the potential for biological and therapeutic actions. SFN and stabilized variants recently received regulatory approval for clinical studies in humans for the treatment of neurological disorders and cancer. Potential unwanted side effects of SFN on heart function have not been investigated yet. The present study characterizes the impact of SFN on cardiomyocyte contractile function in cardiac preparations from neonatal rat, adult mouse and human induced-pluripotent stem cell-derived cardiomyocytes. This revealed a SFN-mediated negative inotropic effect, when administered either acutely or chronically, with an impairment of the Frank-Starling response to stretch activation. A direct effect of SFN on myofilament function was excluded in chemically permeabilized mouse trabeculae. However, SFN pretreatment increased lactate formation and enhanced the mitochondrial production of reactive oxygen species accompanied by a significant reduction in the mitochondrial membrane potential. Transmission electron microscopy revealed disturbed sarcomeric organization and inflated mitochondria with whorled membrane shape in response to SFN exposure. Interestingly, administration of the alternative energy source l-glutamine to the medium that bypasses the uptake route of pyruvate into the mitochondrial tricarboxylic acid cycle improved force development in SFN-treated EHTs, suggesting indeed mitochondrial dysfunction as a contributor of SFN-mediated contractile dysfunction. Taken together, the data from the present study suggest that SFN might impact negatively on cardiac contractility in patients with cardiovascular co-morbidities undergoing SFN supplementation therapy. Therefore, cardiac function should be monitored regularly to avoid the onset of cardiotoxic side effects. Sulforaphane has negative inotropic effects and increases diastolic tension. Sulforaphane exposure increases lactate levels and mitochondrial ROS production and reduces mitochondrial membrane potential. l-glutamine supplementation rescues the sulforaphane-mediated reduction in force development. Sulforaphane plasma levels and cardiac function should be monitored to avoid unwanted cardiac side effects in patients.
Collapse
Affiliation(s)
- Alexandra Rhoden
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Felix W Friedrich
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Theresa Brandt
- Institute of Experimental Pharmacology and Toxicology, University of Würzburg, Versbacher Str., 9 97078, Würzburg, Germany
| | - Janice Raabe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Michaela Schweizer
- Department of Morphology and Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jana Meisterknecht
- Functional Proteomics, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, Faculty of Medicine, Goethe University Frankfurt, 60590, Frankfurt, Germany
| | - Bärbel M Ulmer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - June Uebeler
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Angelika Piasecki
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Kristina Lorenz
- Institute of Experimental Pharmacology and Toxicology, University of Würzburg, Versbacher Str., 9 97078, Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Str. 11, 44139, Dortmund, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|