1
|
Reubsaet L, Halvorsen TG. Advancements in clinical approaches, analytical methods, and smart sampling for LC-MS-based protein determination from dried matrix spots. J Sep Sci 2024; 47:e2400061. [PMID: 38726749 DOI: 10.1002/jssc.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 08/24/2024]
Abstract
Determination of proteins from dried matrix spots using MS is an expanding research area. Mainly, the collected dried matrix sample is whole blood from a finger or heal prick, resulting in dried blood spots. However as other matrices such as plasma, serum, urine, and tear fluid also can be collected in this way, the term dried matrix spot is used as an overarching term. In this review, the focus is on advancements in the field made from 2017 up to 2023. In the first part reviews concerning the subject are discussed. After this, advancements made for clinical purposes are highlighted. Both targeted protein analyses, with and without the use of affinity extractions, as well as untargeted, global proteomic approaches are discussed. In the last part, both methodological advancements are being reviewed as well as the possibility to integrate sample preparation steps during the sample handling. The focus, of this so-called smart sampling, is on the incorporation of cell separation, proteolysis, and antibody-based affinity capture.
Collapse
Affiliation(s)
- Léon Reubsaet
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | |
Collapse
|
2
|
Haller N, Reichel T, Zimmer P, Behringer M, Wahl P, Stöggl T, Krüger K, Simon P. Blood-Based Biomarkers for Managing Workload in Athletes: Perspectives for Research on Emerging Biomarkers. Sports Med 2023; 53:2039-2053. [PMID: 37341908 PMCID: PMC10587296 DOI: 10.1007/s40279-023-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
At present, various blood-based biomarkers have found their applications in the field of sports medicine. This current opinion addresses biomarkers that warrant consideration in future research for monitoring the athlete training load. In this regard, we identified a variety of emerging load-sensitive biomarkers, e.g., cytokines (such as IL-6), chaperones (such as heat shock proteins) or enzymes (such as myeloperoxidase) that could improve future athlete load monitoring as they have shown meaningful increases in acute and chronic exercise settings. In some cases, they have even been linked to training status or performance characteristics. However, many of these markers have not been extensively studied and the cost and effort of measuring these parameters are still high, making them inconvenient for practitioners so far. We therefore outline strategies to improve knowledge of acute and chronic biomarker responses, including ideas for standardized study settings. In addition, we emphasize the need for methodological advances such as the development of minimally invasive point-of-care devices as well as statistical aspects related to the evaluation of these monitoring tools to make biomarkers suitable for regular load monitoring.
Collapse
Affiliation(s)
- Nils Haller
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Thomas Reichel
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Gießen, Giessen, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Michael Behringer
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Wahl
- Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Thomas Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
- Red Bull Athlete Performance Center, Salzburg, Austria
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Gießen, Giessen, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Wang H, Theall BM, Early KS, Vincellette C, Robelot L, Sharp RL, Marucci J, Mullenix S, Calvert D, Lemoine NP, Irving BA, Spielmann G, Johannsen NM. Seasonal changes in physiological and psychological parameters of stress in collegiate swimmers. Sci Rep 2023; 13:10995. [PMID: 37419893 PMCID: PMC10328912 DOI: 10.1038/s41598-023-37124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023] Open
Abstract
To investigate the seasonal changes in physiological and psychological parameters of stress in collegiate swimmers. Fifteen NCAA Division I swimmers (8 men) participated in a tethered anaerobic swim test to determine physiological responses in an ecologically-relevant, graded exercise test. Wisconsin Upper Respiratory Symptom Survey (WURSS-21), Activation-Deactivation Adjective Check List (AD-ACL), Daily Analysis of Life Demands of Athletes (DALDA), and Pittsburgh Sleep Quality Index were assessed at post-season in April (V1), the end of off-season in June (V2), and pre-season in October (V3). The percent change was determined from V2-V1 (off-season phase), V3-V2 (pre-season phase), V1-V3 (in-season phase). Spearman's rho correlation was used to examine associations between change in physiological and psychological outcomes. All data results showed a better swim performance occurred at V2. Men tended to have faster speed (p = 0.07) in fewer strokes (p = 0.10) and greater work per stroke (p = 0.10) at V2 than V1. Women were faster during V2 compared to V1 (p = 0.02) and V3 (p = 0.05). Women had fewer strokes (p = 0.02) and greater work per stroke (p = 0.01) at V2 compared to V3. Women had the lowest HR and lactate concentration at V3 compared to other visits (p < 0.05). During the in-season phase, swim speed decreased the greatest extent and stress sources and symptoms assessed by DALDA had greatest elevation (p < 0.05). An increased in stress sources and symptoms assessed by DALDA was associated with an increase in upper respiratory illness from WURSS-21 (rho = 0.44, p = 0.009), being less energetic (rho = - 0.35, p = 0.04) and greater tension state (rho = 0.49, p = 0.003; AD-ACL), and a decrease in swim speed (rho =- 0.38, p = 0.03). Swim performance peaked at off-season when psychological stress was at its lowest. The relationship between DALDA scores with psychological parameters and swim performance suggested physiological and psychological parameters of stress is an important aspect to avoid overtraining when approaching high swim performance.
Collapse
Affiliation(s)
- Haoyan Wang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | - Bailey M Theall
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
| | - Kate S Early
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
- Department of Kinesiology and Health Sciences, Columbus State University, Columbus, GA, USA
| | | | - Lyle Robelot
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
- Department of Athletics, Louisiana State University, Baton Rouge, LA, USA
| | - Rick L Sharp
- College of Human Sciences, Iowa State University, Ames, IA, USA
| | - Jack Marucci
- Department of Athletics, Louisiana State University, Baton Rouge, LA, USA
| | - Shelly Mullenix
- Department of Athletics, Louisiana State University, Baton Rouge, LA, USA
| | - Derek Calvert
- Department of Athletics, Louisiana State University, Baton Rouge, LA, USA
| | - Nathan P Lemoine
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
- Department of Athletics, Louisiana State University, Baton Rouge, LA, USA
| | - Brain A Irving
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
- Department of Athletics, Louisiana State University, Baton Rouge, LA, USA
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA
- Department of Athletics, Louisiana State University, Baton Rouge, LA, USA
| | - Neil M Johannsen
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA.
- Department of Athletics, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
4
|
Nieman DC, Woo J, Sakaguchi CA, Omar AM, Tang Y, Davis K, Pecorelli A, Valacchi G, Zhang Q. Astaxanthin supplementation counters exercise-induced decreases in immune-related plasma proteins. Front Nutr 2023; 10:1143385. [PMID: 37025615 PMCID: PMC10070989 DOI: 10.3389/fnut.2023.1143385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
Objectives Astaxanthin is a dark red keto-carotenoid found in aquatic animals such as salmon and shrimp, and algae (Haematococcus pluvialis). Astaxanthin has a unique molecular structure that may facilitate anti-oxidative, immunomodulatory, and anti-inflammatory effects during physiological stress. The primary objective of this study was to examine the efficacy of 4-week ingestion of astaxanthin in moderating exercise-induced inflammation and immune dysfunction using a multi-omics approach. Methods This study employed a randomized, double blind, placebo controlled, crossover design with two 4-week supplementation periods and a 2-week washout period. Study participants were randomized to astaxanthin and placebo trials, with supplements ingested daily for 4 weeks prior to running 2.25 h at close to 70%VO2max (including 30 min of 10% downhill running). After the washout period, participants repeated all procedures using the counterbalanced supplement. The astaxanthin capsule contained 8 mg of algae astaxanthin. Six blood samples were collected before and after supplementation (overnight fasted state), immediately post-exercise, and at 1.5, 3, and 24 h-post-exercise. Plasma aliquots were assayed using untargeted proteomics, and targeted oxylipin and cytokine panels. Results The 2.25 h running bout induced significant muscle soreness, muscle damage, and inflammation. Astaxanthin supplementation had no effect on exercise-induced muscle soreness, muscle damage, and increases in six plasma cytokines and 42 oxylipins. Notably, astaxanthin supplementation countered exercise-induced decreases in 82 plasma proteins (during 24 h recovery). Biological process analysis revealed that most of these proteins were involved in immune-related functions such as defense responses, complement activation, and humoral immune system responses. Twenty plasma immunoglobulins were identified that differed significantly between the astaxanthin and placebo trials. Plasma levels of IgM decreased significantly post-exercise but recovered after the 24 h post-exercise recovery period in the astaxanthin but not the placebo trial. Discussion These data support that 4-week astaxanthin versus placebo supplementation did not counter exercise-induced increases in plasma cytokines and oxylipins but was linked to normalization of post-exercise plasma levels of numerous immune-related proteins including immunoglobulins within 24 h. Short-term astaxanthin supplementation (8 mg/day during a 4-week period) provided immune support for runners engaging in a vigorous 2.25 h running bout and uniquely countered decreases in plasma immunoglobulin levels.
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, Kannapolis, NC, United States
- *Correspondence: David C. Nieman,
| | - Jongmin Woo
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Camila A. Sakaguchi
- Human Performance Laboratory, Appalachian State University, Kannapolis, NC, United States
| | - Ashraf M. Omar
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Yang Tang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Kierstin Davis
- Human Performance Laboratory, Appalachian State University, Kannapolis, NC, United States
| | - Alessandra Pecorelli
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Giuseppe Valacchi
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC, United States
| |
Collapse
|
5
|
Bassini A, Sartoretto S, Jurisica L, Magno-França A, Anderson L, Pearson T, Razavi M, Chandran V, Martin L, Jurisica I, Cameron LC. Sportomics method to assess acute phase proteins in Olympic level athletes using dried blood spots and multiplex assay. Sci Rep 2022; 12:19824. [PMID: 36400821 PMCID: PMC9672598 DOI: 10.1038/s41598-022-23300-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/29/2022] [Indexed: 11/19/2022] Open
Abstract
Sportomics is a subject-centered holistic method similar to metabolomics focusing on sports as the metabolic challenge. Dried blood spot is emerging as a technique due to its simplicity and reproducibility. In addition, mass spectrometry and integrative computational biology enhance our ability to understand exercise-induced modifications. We studied inflammatory blood proteins (Alpha-1-acid glycoprotein-A1AG1; Albumin; Cystatin C; C-reactive protein-CRP; Hemoglobin-HBA; Haptoglobin-HPT; Insulin-like growth factor 1; Lipopolysaccharide binding protein-LBP; Mannose-binding lectin-MBL2; Myeloperoxidase-PERM and Serum amyloid A1-SAA1), in 687 samples from 97 World-class and Olympic athletes across 16 sports in nine states. Data were analyzed with Spearman's rank-order correlation. Major correlations with CRP, LBP; MBL2; A1AG1, and SAA1 were found. The pairs CRP-SAA1 and CRP-LBP appeared with a robust positive correlation. Other pairs, LBP-SAA1; A1AG1-CRP; A1AG1-SAA1; A1AG1-MBL, and A1AG1-LBP, showed a broader correlation across the sports. The protein-protein interaction map revealed 1500 interactions with 44 core proteins, 30 of them linked to immune system processing. We propose that the inflammation follow-up in exercise can provide knowledge for internal cargo management in training, competition, recovery, doping control, and a deeper understanding of health and disease.
Collapse
Affiliation(s)
- Adriana Bassini
- grid.467095.90000 0001 2237 7915Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro, Av. Pasteur, 296 – Urca, Rio de Janeiro, R.J. 22290-350 Brazil ,SOmics, Vila Velha, ES Brazil
| | - Silvia Sartoretto
- grid.467095.90000 0001 2237 7915Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro, Av. Pasteur, 296 – Urca, Rio de Janeiro, R.J. 22290-350 Brazil
| | - Lukas Jurisica
- grid.467095.90000 0001 2237 7915Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro, Av. Pasteur, 296 – Urca, Rio de Janeiro, R.J. 22290-350 Brazil ,grid.34428.390000 0004 1936 893XSchool of Computer Science, Carleton University, Ottawa, Canada ,grid.17063.330000 0001 2157 2938Department of Computer Science, University of Toronto, Toronto, Canada
| | - Alexandre Magno-França
- grid.467095.90000 0001 2237 7915Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro, Av. Pasteur, 296 – Urca, Rio de Janeiro, R.J. 22290-350 Brazil
| | | | - Terry Pearson
- SISCAPA Assay Technologies, Inc., Washington, DC USA
| | - Morty Razavi
- SISCAPA Assay Technologies, Inc., Washington, DC USA
| | - Vinod Chandran
- grid.231844.80000 0004 0474 0428Arthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - LeRoy Martin
- grid.433801.d0000 0004 0580 039XWaters Technologies, Milford, MA USA
| | - Igor Jurisica
- grid.231844.80000 0004 0474 0428Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Canada ,grid.17063.330000 0001 2157 2938Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON Canada ,grid.419303.c0000 0001 2180 9405Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L. C. Cameron
- grid.467095.90000 0001 2237 7915Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro, Av. Pasteur, 296 – Urca, Rio de Janeiro, R.J. 22290-350 Brazil
| |
Collapse
|
6
|
Nguyen MT, Halvorsen TG, Thiede B, Reubsaet L. Smart proteolysis samplers for pre‐lab bottom‐up protein analysis – Performance of on‐paper digestion compared to conventional digestion. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202100062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Minh Thao Nguyen
- Section of Pharmaceutical Chemistry, Department of Pharmacy University of Oslo Oslo Norway
| | | | - Bernd Thiede
- Section of Biochemistry and Molecular Biology, Department of Biosciences University of Oslo Oslo Norway
| | - Léon Reubsaet
- Section of Pharmaceutical Chemistry, Department of Pharmacy University of Oslo Oslo Norway
| |
Collapse
|
7
|
Derman W, Badenhorst M, Eken MM, Ezeiza-Gomez J, Fitzpatrick J, Gleeson M, Kunorozva L, Mjosund K, Mountjoy M, Sewry N, Schwellnus M. Incidence of acute respiratory illnesses in athletes: a systematic review and meta-analysis by a subgroup of the IOC consensus on 'acute respiratory illness in the athlete'. Br J Sports Med 2022; 56:630-638. [PMID: 35260411 DOI: 10.1136/bjsports-2021-104737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To determine the incidence of acute respiratory illness (ARill) in athletes and by method of diagnosis, anatomical classification, ages, levels of performance and seasons. DESIGN Systematic review and meta-analysis. DATA SOURCES Electronic databases: PubMed-Medline, EbscoHost and Web of Science. ELIGIBILITY CRITERIA Original research articles published between January 1990 and July 2020 in English reporting the incidence of ARill in athletes, at any level of performance (elite/non-elite), aged 15-65 years. RESULTS Across all 124 studies (n=1 28 360 athletes), the incidence of ARill, estimated by dividing the number of cases by the total number of athlete days, was 4.7 (95% CI 3.9 to 5.7) per 1000 athlete days. In studies reporting acute respiratory infections (ARinf; suspected and confirmed) the incidence was 4.9 (95% CI 4.0 to 6.0), which was similar in studies reporting undiagnosed ARill (3.7; 95% CI 2.1 to 6.7). Incidences of 5.9 (95% CI 4.8 to 7.2) and 2.8 (95% CI 1.8 to 4.5) were found for studies reporting upper ARinf and general ARinf (upper or lower), respectively. The incidence of ARinf was similar across the different methods to diagnose ARinf. A higher incidence of ARinf was found in non-elite (8.7; 95% CI 6.1 to 12.5) vs elite athletes (4.2; 95% CI 3.3 to 5.3). SUMMARY/CONCLUSIONS These findings suggest: (1) the incidence of ARill equates to approximately 4.7 per athlete per year; (2) the incidence of upper ARinf was significantly higher than general (upper/lower) ARinf; (3) elite athletes have a lower incidence of ARinf than non-elite athletes; (4) if pathogen identification is not available, physicians can confidently use validated questionnaires and checklists to screen athletes for suspected ARinf. For future studies, we recommend that a clear diagnosis of ARill is reported. PROSPERO REGISTRATION NUMBER CRD42020160472.
Collapse
Affiliation(s)
- Wayne Derman
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa .,International Olympic Committee Research Centre, Pretoria, South Africa
| | - Marelise Badenhorst
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Maaike Maria Eken
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Josu Ezeiza-Gomez
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,International Olympic Committee Research Centre, Pretoria, South Africa
| | - Jane Fitzpatrick
- Centre for Health and Exercise Sports Medicine, Faculty of Medicine Dentistry and Health Science, University of Melbourne, Parkville, Victoria, Australia
| | - Maree Gleeson
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Lovemore Kunorozva
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Katja Mjosund
- Paavo Nurmi Centre, Sport and Exercise Medicine Unit, University of Turku, Turku, Finland
| | - Margo Mountjoy
- Department of Family Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicola Sewry
- International Olympic Committee Research Centre, Pretoria, South Africa.,Sport, Exercise Medicine and Lifestyle Institute, University of Pretoria, Faculty of Health Sciences, Pretoria, South Africa
| | - Martin Schwellnus
- International Olympic Committee Research Centre, Pretoria, South Africa.,Sport, Exercise Medicine and Lifestyle Institute, University of Pretoria, Faculty of Health Sciences, Pretoria, South Africa
| |
Collapse
|
8
|
Carneiro A, Viana-Gomes D, Macedo-da-Silva J, Lima GHO, Mitri S, Alves SR, Kolliari-Turner A, Zanoteli E, Neto FRDA, Palmisano G, Pesquero JB, Moreira JC, Pereira MD. Risk factors and future directions for preventing and diagnosing exertional rhabdomyolysis. Neuromuscul Disord 2021; 31:583-595. [PMID: 34193371 DOI: 10.1016/j.nmd.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
Exertional rhabdomyolysis may occur when an individual is subjected to strenuous physical exercise. It is occasionally associated with myoglobinuria (i.e. "cola-colored" urine) alongside muscle pain and weakness. The pathophysiology of exertional rhabdomyolysis involves striated muscle damage and the release of cellular components into extracellular fluid and bloodstream. This can cause acute renal failure, electrolyte abnormalities, arrhythmias and potentially death. Exertional rhabdomyolysis is observed in high-performance athletes who are subjected to intense, repetitive and/or prolonged exercise but is also observed in untrained individuals and highly trained or elite groups of military personnel. Several risk factors have been reported to increase the likelihood of the condition in athletes, including: viral infection, drug and alcohol abuse, exercise in intensely hot and humid environments, genetic polymorphisms (e.g. sickle cell trait and McArdle disease) and epigenetic modifications. This article reviews several of these risk factors and proposes screening protocols to identify individual susceptibility to exertional rhabdomyolysis as well as the relevance of proteomics for the evaluation of potential biomarkers of muscle damage.
Collapse
Affiliation(s)
- Andréia Carneiro
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil; Departamento de Química, Diretoria de Sistemas de Armas da Marinha, Marinha do Brazil, Brazil; Departamento de Parasitologia, Universidade de São Paulo, Instituto de Ciencias Biomédicas, Brazil.
| | - Diego Viana-Gomes
- Departamento de Corridas, Universidade Federal do Rio de Janeiro, Escola de Educação Física, Brazil
| | - Janaina Macedo-da-Silva
- Departamento de Parasitologia, Universidade de São Paulo, Instituto de Ciencias Biomédicas, Brazil
| | - Giscard Humberto Oliveira Lima
- Departamento de Biofísica, Universidade Federal de São Paulo, Brazil; Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | - Simone Mitri
- Centro de Ecologia Humana e Saúde do Trabalhador, Fundação Oswaldo Cruz, Brazil
| | | | | | - Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | | | - Giuseppe Palmisano
- Departamento de Parasitologia, Universidade de São Paulo, Instituto de Ciencias Biomédicas, Brazil
| | - João Bosco Pesquero
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | | | - Marcos Dias Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Nieman DC, Pence BD. Exercise immunology: Future directions. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:432-445. [PMID: 32928447 PMCID: PMC7498623 DOI: 10.1016/j.jshs.2019.12.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 05/07/2023]
Abstract
Several decades of research in the area of exercise immunology have shown that the immune system is highly responsive to acute and chronic exercise training. Moderate exercise bouts enhance immunosurveillance and when repeated over time mediate multiple health benefits. Most of the studies prior to 2010 relied on a few targeted outcomes related to immune function. During the past decade, technologic advances have created opportunities for a multi-omics and systems biology approach to exercise immunology. This article provides an overview of metabolomics, lipidomics, and proteomics as they pertain to exercise immunology, with a focus on immunometabolism. This review also summarizes how the composition and diversity of the gut microbiota can be influenced by exercise, with applications to human health and immunity. Exercise-induced improvements in immune function may play a critical role in countering immunosenescence and the development of chronic diseases, and emerging omics technologies will more clearly define the underlying mechanisms. This review summarizes what is currently known regarding a multi-omics approach to exercise immunology and provides future directions for investigators.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| | - Brandt D Pence
- School of Health Studies, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|