1
|
Amin A, Bailey N, Warren A, Reddy B. Non-sustained Ventricular Tachycardia as a Presentation of Arrhythmogenic Right Ventricular Cardiomyopathy. Cureus 2023; 15:e38620. [PMID: 37284396 PMCID: PMC10240442 DOI: 10.7759/cureus.38620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare disorder with familial (autosomal dominant) predisposition and can be challenging to diagnose. Non-sustained ventricular tachycardia (NSVT) is a relatively uncommon and short-lived arrhythmia when seen in the general, healthy population. NSVT with a left bundle branch block morphology is usually idiopathic but may also be seen in ARVC. It can also be associated with poorer prognosis and increased mortality. Repetitive monomorphic ventricular ectopic beats may suggest ARVC, but could also be idiopathic. Timely diagnosis is vital due to the unpredictability and progressive nature of ARVC. We present a case of a 40-year-old Caucasian female with heart palpitations and NSVT found on an outpatient Holter monitor, and later found to have clinical and radiological features consistent with ARVC.
Collapse
Affiliation(s)
- Adina Amin
- Internal Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, USA
| | - Nadian Bailey
- Internal Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, USA
| | - Amanda Warren
- Internal Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, USA
| | - Bharath Reddy
- Cardiac Electrophysiology, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, USA
| |
Collapse
|
2
|
The contracture-in-a-well. An in vitro model distinguishes bulk and interfacial processes of irreversible (fibrotic) cell-mediated contraction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112661. [DOI: 10.1016/j.msec.2022.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/21/2022]
|
3
|
Velluva A, Radtke M, Horn S, Popp B, Platzer K, Gjermeni E, Lin CC, Lemke JR, Garten A, Schöneberg T, Blüher M, Abou Jamra R, Le Duc D. Phenotype-tissue expression and exploration (PTEE) resource facilitates the choice of tissue for RNA-seq-based clinical genetics studies. BMC Genomics 2021; 22:802. [PMID: 34743696 PMCID: PMC8573933 DOI: 10.1186/s12864-021-08125-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/26/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND RNA-seq emerges as a valuable method for clinical genetics. The transcriptome is "dynamic" and tissue-specific, but typically the probed tissues to analyze (TA) are different from the tissue of interest (TI) based on pathophysiology. RESULTS We developed Phenotype-Tissue Expression and Exploration (PTEE), a tool to facilitate the decision about the most suitable TA for RNA-seq. We integrated phenotype-annotated genes, used 54 tissues from GTEx to perform correlation analyses and identify expressed genes and transcripts between TAs and TIs. We identified skeletal muscle as the most appropriate TA to inquire for cardiac arrhythmia genes and skin as a good proxy to study neurodevelopmental disorders. We also explored RNA-seq limitations and show that on-off switching of gene expression during ontogenesis or circadian rhythm can cause blind spots for RNA-seq-based analyses. CONCLUSIONS PTEE aids the identification of tissues suitable for RNA-seq for a given pathology to increase the success rate of diagnosis and gene discovery. PTEE is freely available at https://bioinf.eva.mpg.de/PTEE/.
Collapse
Affiliation(s)
- Akhil Velluva
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany.
| | - Maximillian Radtke
- Institute of Human Genetics, University Medical Center Leipzig, 04103, Leipzig, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Bernt Popp
- Institute of Human Genetics, University Medical Center Leipzig, 04103, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University Medical Center Leipzig, 04103, Leipzig, Germany
| | - Erind Gjermeni
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, 04289, Leipzig, Germany
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774, Dahlen, Germany
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Johannes R Lemke
- Institute of Human Genetics, University Medical Center Leipzig, 04103, Leipzig, Germany
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, 04103, Leipzig, Germany
| | - Diana Le Duc
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
- Institute of Human Genetics, University Medical Center Leipzig, 04103, Leipzig, Germany.
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Lin YN, Mesquita T, Sanchez L, Chen YH, Liu W, Li C, Rogers R, Wang Y, Li X, Wu D, Zhang R, Ibrahim A, Marbán E, Cingolani E. Extracellular vesicles from immortalized cardiosphere-derived cells attenuate arrhythmogenic cardiomyopathy in desmoglein-2 mutant mice. Eur Heart J 2021; 42:3558-3571. [PMID: 34345905 PMCID: PMC8442111 DOI: 10.1093/eurheartj/ehab419] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023] Open
Abstract
AIMS Arrhythmogenic cardiomyopathy (ACM) is characterized by progressive loss of cardiomyocytes, and fibrofatty tissue replacement. Extracellular vesicles (EVs) secreted by cardiosphere-derived cells, immortalized, and engineered to express high levels of β-catenin, exert anti-inflammatory, and anti-fibrotic effects. The aim of the current study was to assess efficacy of EVs in an ACM murine model. METHODS AND RESULTS Four-week-old homozygous knock-in mutant desmoglein-2 (Dsg2mt/mt) were randomized to receive weekly EVs or vehicle for 4 weeks. After 4 weeks, DSG2mt/mt mice receiving EVs showed improved biventricular function (left, P < 0.0001; right, P = 0.0037) and less left ventricular dilation (P < 0.0179). Electrocardiography revealed abbreviated QRS duration (P = 0.0003) and QTc interval (P = 0.0006) in EV-treated DSG2mt/mt mice. Further electrophysiology testing in the EV group showed decreased burden (P = 0.0042) and inducibility of ventricular arrhythmias (P = 0.0037). Optical mapping demonstrated accelerated repolarization (P = 0.0290) and faster conduction (P = 0.0274) in Dsg2mt/mt mice receiving EVs. DSG2mt/mt hearts exhibited reduced fibrosis, less cell death, and preserved connexin 43 expression after EV treatment. Hearts of Dsg2mt/mt mice expressed markedly increased levels of inflammatory cytokines that were, in part, attenuated by EV therapy. The pan-inflammatory transcription factor nuclear factor-κB (NF-κB), the inflammasome sensor NLRP3, and the macrophage marker CD68 were all reduced in EV-treated animals. Blocking EV hsa-miR-4488 in vitro and in vivo reactivates NF-κB and blunts the beneficial effects of EVs. CONCLUSIONS Extracellular vesicle treatment improved cardiac function, reduced cardiac inflammation, and suppressed arrhythmogenesis in ACM. Further studies are needed prior to translating the present findings to human forms of this heterogenous disease.
Collapse
Affiliation(s)
- Yen-Nien Lin
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University and Hospital, 2, Yu-Der Road, North District, Taichung 40447, Taiwan; and
| | - Thassio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Lizbeth Sanchez
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Yin-Huei Chen
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University and Hospital, 2, Yu-Der Road, North District, Taichung 40447, Taiwan; and
| | - Weixin Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Chang Li
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Russell Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd. Los Angeles, CA 90048, USA
| | - Xinling Li
- Genomics Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd. Los Angeles, CA 90048, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, 8700 Beverly Blvd. Los Angeles, CA 90048, USA
| | - Rui Zhang
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Ahmed Ibrahim
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Boulevard, Los Angeles, CA 90048, USA
| |
Collapse
|