1
|
Lootens S, Janssens I, Van Den Abeele R, Wülfers EM, Bezerra AS, Verstraeten B, Hendrickx S, Okenov A, Nezlobinsky T, Panfilov AV, Vandersickel N. Directed Graph Mapping exceeds Phase Mapping for the detection of simulated 2D meandering rotors in fibrotic tissue with added noise. Comput Biol Med 2024; 171:108138. [PMID: 38401451 PMCID: PMC10966475 DOI: 10.1016/j.compbiomed.2024.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Cardiac arrhythmias such as atrial fibrillation (AF) are recognised to be associated with re-entry or rotors. A rotor is a wave of excitation in the cardiac tissue that wraps around its refractory tail, causing faster-than-normal periodic excitation. The detection of rotor centres is of crucial importance in guiding ablation strategies for the treatment of arrhythmia. The most popular technique for detecting rotor centres is Phase Mapping (PM), which detects phase singularities derived from the phase of a signal. This method has been proven to be prone to errors, especially in regimes of fibrotic tissue and temporal noise. Recently, a novel technique called Directed Graph Mapping (DGM) was developed to detect rotational activity such as rotors by creating a network of excitation. This research aims to compare the performance of advanced PM techniques versus DGM for the detection of rotors using 64 simulated 2D meandering rotors in the presence of various levels of fibrotic tissue and temporal noise. Four strategies were employed to compare the performances of PM and DGM. These included a visual analysis, a comparison of F2-scores and distance distributions, and calculating p-values using the mid-p McNemar test. Results indicate that in the case of low meandering, fibrosis and noise, PM and DGM yield excellent results and are comparable. However, in the case of high meandering, fibrosis and noise, PM is undeniably prone to errors, mainly in the form of an excess of false positives, resulting in low precision. In contrast, DGM is more robust against these factors as F2-scores remain high, yielding F2≥0.931 as opposed to the best PM F2≥0.635 across all 64 simulations.
Collapse
Affiliation(s)
| | - Iris Janssens
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | | | - Eike M Wülfers
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | | | - Bjorn Verstraeten
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Sander Hendrickx
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Arstanbek Okenov
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Timur Nezlobinsky
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium; World-Class Research Center "Digital Biodesign and personalised healthcare", Sechenov University, Moscow 119991, Russia; Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg 620002, Russia
| | - Nele Vandersickel
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Solís-Lemus JA, Baptiste T, Barrows R, Sillett C, Gharaviri A, Raffaele G, Razeghi O, Strocchi M, Sim I, Kotadia I, Bodagh N, O'Hare D, O'Neill M, Williams SE, Roney C, Niederer S. Evaluation of an open-source pipeline to create patient-specific left atrial models: A reproducibility study. Comput Biol Med 2023; 162:107009. [PMID: 37301099 PMCID: PMC10790305 DOI: 10.1016/j.compbiomed.2023.107009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023]
Abstract
This work presents an open-source software pipeline to create patient-specific left atrial models with fibre orientations and a fibrDEFAULTosis map, suitable for electrophysiology simulations, and quantifies the intra and inter observer reproducibility of the model creation. The semi-automatic pipeline takes as input a contrast enhanced magnetic resonance angiogram, and a late gadolinium enhanced (LGE) contrast magnetic resonance (CMR). Five operators were allocated 20 cases each from a set of 50 CMR datasets to create a total of 100 models to evaluate inter and intra-operator variability. Each output model consisted of: (1) a labelled surface mesh open at the pulmonary veins and mitral valve, (2) fibre orientations mapped from a diffusion tensor MRI (DTMRI) human atlas, (3) fibrosis map extracted from the LGE-CMR scan, and (4) simulation of local activation time (LAT) and phase singularity (PS) mapping. Reproducibility in our pipeline was evaluated by comparing agreement in shape of the output meshes, fibrosis distribution in the left atrial body, and fibre orientations. Reproducibility in simulations outputs was evaluated in the LAT maps by comparing the total activation times, and the mean conduction velocity (CV). PS maps were compared with the structural similarity index measure (SSIM). The users processed in total 60 cases for inter and 40 cases for intra-operator variability. Our workflow allows a single model to be created in 16.72 ± 12.25 min. Similarity was measured with shape, percentage of fibres oriented in the same direction, and intra-class correlation coefficient (ICC) for the fibrosis calculation. Shape differed noticeably only with users' selection of the mitral valve and the length of the pulmonary veins from the ostia to the distal end; fibrosis agreement was high, with ICC of 0.909 (inter) and 0.999 (intra); fibre orientation agreement was high with 60.63% (inter) and 71.77% (intra). The LAT showed good agreement, where the median ± IQR of the absolute difference of the total activation times was 2.02 ± 2.45 ms for inter, and 1.37 ± 2.45 ms for intra. Also, the average ± sd of the mean CV difference was -0.00404 ± 0.0155 m/s for inter, and 0.0021 ± 0.0115 m/s for intra. Finally, the PS maps showed a moderately good agreement in SSIM for inter and intra, where the mean ± sd SSIM for inter and intra were 0.648 ± 0.21 and 0.608 ± 0.15, respectively. Although we found notable differences in the models, as a consequence of user input, our tests show that the uncertainty caused by both inter and intra-operator variability is comparable with uncertainty due to estimated fibres, and image resolution accuracy of segmentation tools.
Collapse
Affiliation(s)
- José Alonso Solís-Lemus
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK.
| | - Tiffany Baptiste
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK
| | - Rosie Barrows
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK
| | - Charles Sillett
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK
| | - Ali Gharaviri
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK; Centre for Cardiovascular Science, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, Scotland, UK
| | - Giulia Raffaele
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK; School of Medical Education, King's College London, St Thomas Hospital, London, SE1 7EH, UK
| | - Orod Razeghi
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK; Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, UK
| | - Marina Strocchi
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK
| | - Iain Sim
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK
| | - Irum Kotadia
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK
| | - Neil Bodagh
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK
| | - Daniel O'Hare
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK
| | - Mark O'Neill
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK
| | - Steven E Williams
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK; Centre for Cardiovascular Science, University of Edinburgh, Old College, South Bridge, Edinburgh, EH8 9YL, Scotland, UK
| | - Caroline Roney
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK; Queen Mary University of London, Mile End Rd, Bethnal Green, London, E1 4NS, UK
| | - Steven Niederer
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas Hospital, London, SE1 7EH, UK; Alan Turing Institute, British Library, 96 Euston Rd, London, NW1 2DB, UK
| |
Collapse
|
3
|
Galappaththige S, Pathmanathan P, Gray RA. A computational modeling framework for pre-clinical evaluation of cardiac mapping systems. Front Physiol 2023; 14:1074527. [PMID: 37485068 PMCID: PMC10358980 DOI: 10.3389/fphys.2023.1074527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
There are a variety of difficulties in evaluating clinical cardiac mapping systems, most notably the inability to record the transmembrane potential throughout the entire heart during patient procedures which prevents the comparison to a relevant "gold standard". Cardiac mapping systems are comprised of hardware and software elements including sophisticated mathematical algorithms, both of which continue to undergo rapid innovation. The purpose of this study is to develop a computational modeling framework to evaluate the performance of cardiac mapping systems. The framework enables rigorous evaluation of a mapping system's ability to localize and characterize (i.e., focal or reentrant) arrhythmogenic sources in the heart. The main component of our tool is a library of computer simulations of various dynamic patterns throughout the entire heart in which the type and location of the arrhythmogenic sources are known. Our framework allows for performance evaluation for various electrode configurations, heart geometries, arrhythmias, and electrogram noise levels and involves blind comparison of mapping systems against a "silver standard" comprised of computer simulations in which the precise transmembrane potential patterns throughout the heart are known. A feasibility study was performed using simulations of patterns in the human left atria and three hypothetical virtual catheter electrode arrays. Activation times (AcT) and patterns (AcP) were computed for three virtual electrode arrays: two basket arrays with good and poor contact and one high-resolution grid with uniform spacing. The average root mean squared difference of AcTs of electrograms and those of the nearest endocardial action potential was less than 1 ms and therefore appears to be a poor performance metric. In an effort to standardize performance evaluation of mapping systems a novel performance metric is introduced based on the number of AcPs identified correctly and those considered spurious as well as misclassifications of arrhythmia type; spatial and temporal localization accuracy of correctly identified patterns was also quantified. This approach provides a rigorous quantitative analysis of cardiac mapping system performance. Proof of concept of this computational evaluation framework suggests that it could help safeguard that mapping systems perform as expected as well as provide estimates of system accuracy.
Collapse
|
4
|
Hernández-Romero I, Molero R, Fambuena-Santos C, Herrero-Martín C, Climent AM, Guillem MS. Electrocardiographic imaging in the atria. Med Biol Eng Comput 2023; 61:879-896. [PMID: 36370321 PMCID: PMC9988819 DOI: 10.1007/s11517-022-02709-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The inverse problem of electrocardiography or electrocardiographic imaging (ECGI) is a technique for reconstructing electrical information about cardiac surfaces from noninvasive or non-contact recordings. ECGI has been used to characterize atrial and ventricular arrhythmias. Although it is a technology with years of progress, its development to characterize atrial arrhythmias is challenging. Complications can arise when trying to describe the atrial mechanisms that lead to abnormal propagation patterns, premature or tachycardic beats, and reentrant arrhythmias. This review addresses the various ECGI methodologies, regularization methods, and post-processing techniques used in the atria, as well as the context in which they are used. The current advantages and limitations of ECGI in the fields of research and clinical diagnosis of atrial arrhythmias are outlined. In addition, areas where ECGI efforts should be concentrated to address the associated unsatisfied needs from the atrial perspective are discussed.
Collapse
Affiliation(s)
| | - Rubén Molero
- ITACA, Universitat Politècnica de València, Valencia, Spain
| | | | | | | | | |
Collapse
|
5
|
Fambuena-Santos C, Hernández-Romero I, Molero R, Atienza F, Climent AM, Guillem MS. AF driver detection in pulmonary vein area by electropcardiographic imaging: Relation with a favorable outcome of pulmonary vein isolation. Front Physiol 2023; 14:1057700. [PMID: 36793415 PMCID: PMC9922892 DOI: 10.3389/fphys.2023.1057700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
Pulmonary vein isolation (PVI) is the most successful treatment for atrial fibrillation (AF) nowadays. However, not all AF patients benefit from PVI. In this study, we evaluate the use of ECGI to identify reentries and relate rotor density in the pulmonary vein (PV) area as an indicator of PVI outcome. Rotor maps were computed in a set of 29 AF patients using a new rotor detection algorithm. The relationship between the distribution of reentrant activity and the clinical outcome after PVI was studied. The number of rotors and proportion of PSs in different atrial regions were computed and compared retrospectively in two groups of patients: patients that remained in sinus rhythm 6 months after PVI and patients with arrhythmia recurrence. The total number of rotors obtained was higher in patients returning to arrhythmia after the ablation (4.31 ± 2.77 vs. 3.58 ± 2.67%, p = 0.018). However, a significantly higher concentration of PSs in the pulmonary veins was found in patients that remained in sinus rhythm (10.20 ± 12.40% vs. 5.19 ± 9.13%, p = 0.011) 6 months after PVI. The results obtained show a direct relationship between the expected AF mechanism and the electrophysiological parameters provided by ECGI, suggesting that this technology offers relevant information to predict the clinical outcome after PVI in AF patients.
Collapse
Affiliation(s)
- Carlos Fambuena-Santos
- COR Laboratory, ITACA Institute, Universitat Politècnica de València, Valencia, Spain,*Correspondence: Carlos Fambuena-Santos,
| | | | - Rubén Molero
- COR Laboratory, ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | - Felipe Atienza
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andreu M. Climent
- COR Laboratory, ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | - M S. Guillem
- COR Laboratory, ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
6
|
Convolutional Neural Networks for Mechanistic Driver Detection in Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23084216. [PMID: 35457044 PMCID: PMC9032062 DOI: 10.3390/ijms23084216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
The maintaining and initiating mechanisms of atrial fibrillation (AF) remain controversial. Deep learning is emerging as a powerful tool to better understand AF and improve its treatment, which remains suboptimal. This paper aims to provide a solution to automatically identify rotational activity drivers in endocardial electrograms (EGMs) with convolutional recurrent neural networks (CRNNs). The CRNN model was compared with two other state-of-the-art methods (SimpleCNN and attention-based time-incremental convolutional neural network (ATI-CNN)) for different input signals (unipolar EGMs, bipolar EGMs, and unipolar local activation times), sampling frequencies, and signal lengths. The proposed CRNN obtained a detection score based on the Matthews correlation coefficient of 0.680, an ATI-CNN score of 0.401, and a SimpleCNN score of 0.118, with bipolar EGMs as input signals exhibiting better overall performance. In terms of signal length and sampling frequency, no significant differences were found. The proposed architecture opens the way for new ablation strategies and driver detection methods to better understand the AF problem and its treatment.
Collapse
|
7
|
Chu GS, Li X, Stafford PJ, Vanheusden FJ, Salinet JL, Almeida TP, Dastagir N, Sandilands AJ, Kirchhof P, Schlindwein FS, Ng GA. Simultaneous Whole-Chamber Non-contact Mapping of Highest Dominant Frequency Sites During Persistent Atrial Fibrillation: A Prospective Ablation Study. Front Physiol 2022; 13:826449. [PMID: 35370796 PMCID: PMC8966840 DOI: 10.3389/fphys.2022.826449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Sites of highest dominant frequency (HDF) are implicated by many proposed mechanisms underlying persistent atrial fibrillation (persAF). We hypothesized that prospectively identifying and ablating dynamic left atrial HDF sites would favorably impact the electrophysiological substrate of persAF. We aim to assess the feasibility of prospectively identifying HDF sites by global simultaneous left atrial mapping. Methods PersAF patients with no prior ablation history underwent global simultaneous left atrial non-contact mapping. 30 s of electrograms recorded during AF were exported into a bespoke MATLAB interface to identify HDF regions, which were then targeted for ablation, prior to pulmonary vein isolation. Following ablation of each region, change in AF cycle length (AFCL) was documented (≥ 10 ms considered significant). Baseline isopotential maps of ablated regions were retrospectively analyzed looking for rotors and focal activation or extinction events. Results A total of 51 HDF regions were identified and ablated in 10 patients (median DF 5.8Hz, range 4.4-7.1Hz). An increase in AFCL of was seen in 20 of the 51 regions (39%), including AF termination in 4 patients. 5 out of 10 patients (including the 4 patients where AF termination occurred with HDF-guided ablation) were free from AF recurrence at 1 year. The proportion of HDF occurrences in an ablated region was not associated with change in AFCL (τ = 0.11, p = 0.24). Regions where AFCL decreased by 10 ms or more (i.e., AF disorganization) after ablation also showed lowest baseline spectral organization (p < 0.033 for any comparison). Considering all ablated regions, the average proportion of HDF events which were also HRI events was 8.0 ± 13%. Focal activations predominated (537/1253 events) in the ablated regions on isopotential maps, were modestly associated with the proportion of HDF occurrences represented by the ablated region (Kendall's τ = 0.40, p < 0.0001), and very strongly associated with focal extinction events (τ = 0.79, p < 0.0001). Rotors were rare (4/1253 events). Conclusion Targeting dynamic HDF sites is feasible and can be efficacious, but lacks specificity in identifying relevant human persAF substrate. Spectral organization may have an adjunctive role in preventing unnecessary substrate ablation. Dynamic HDF sites are not associated with observable rotational activity on isopotential mapping, but epi-endocardial breakthroughs could be contributory.
Collapse
Affiliation(s)
- Gavin S. Chu
- Department of Cardiovascular Science, University of Leicester, Leicester, United Kingdom
- Lancashire Cardiac Centre, Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, United Kingdom
| | - Xin Li
- Department of Cardiovascular Science, University of Leicester, Leicester, United Kingdom
- School of Engineering, University of Leicester, Leicester, United Kingdom
| | - Peter J. Stafford
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | | | - João L. Salinet
- Center for Engineering, Modeling and Applied Social Sciences, University Federal of ABC, Santo André, Brazil
| | - Tiago P. Almeida
- Department of Cardiovascular Science, University of Leicester, Leicester, United Kingdom
- School of Engineering, University of Leicester, Leicester, United Kingdom
| | - Nawshin Dastagir
- Department of International Foundation, Massey University, Auckland, New Zealand
| | - Alastair J. Sandilands
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Paulus Kirchhof
- University Heart and Vascular Centre, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fernando S. Schlindwein
- School of Engineering, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - G. André Ng
- Department of Cardiovascular Science, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
8
|
Lebert J, Ravi N, Fenton FH, Christoph J. Rotor Localization and Phase Mapping of Cardiac Excitation Waves Using Deep Neural Networks. Front Physiol 2022; 12:782176. [PMID: 34975536 PMCID: PMC8718715 DOI: 10.3389/fphys.2021.782176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/11/2021] [Indexed: 11/15/2022] Open
Abstract
The analysis of electrical impulse phenomena in cardiac muscle tissue is important for the diagnosis of heart rhythm disorders and other cardiac pathophysiology. Cardiac mapping techniques acquire local temporal measurements and combine them to visualize the spread of electrophysiological wave phenomena across the heart surface. However, low spatial resolution, sparse measurement locations, noise and other artifacts make it challenging to accurately visualize spatio-temporal activity. For instance, electro-anatomical catheter mapping is severely limited by the sparsity of the measurements, and optical mapping is prone to noise and motion artifacts. In the past, several approaches have been proposed to create more reliable maps from noisy or sparse mapping data. Here, we demonstrate that deep learning can be used to compute phase maps and detect phase singularities in optical mapping videos of ventricular fibrillation, as well as in very noisy, low-resolution and extremely sparse simulated data of reentrant wave chaos mimicking catheter mapping data. The self-supervised deep learning approach is fundamentally different from classical phase mapping techniques. Rather than encoding a phase signal from time-series data, a deep neural network instead learns to directly associate phase maps and the positions of phase singularities with short spatio-temporal sequences of electrical data. We tested several neural network architectures, based on a convolutional neural network (CNN) with an encoding and decoding structure, to predict phase maps or rotor core positions either directly or indirectly via the prediction of phase maps and a subsequent classical calculation of phase singularities. Predictions can be performed across different data, with models being trained on one species and then successfully applied to another, or being trained solely on simulated data and then applied to experimental data. Neural networks provide a promising alternative to conventional phase mapping and rotor core localization methods. Future uses may include the analysis of optical mapping studies in basic cardiovascular research, as well as the mapping of atrial fibrillation in the clinical setting.
Collapse
Affiliation(s)
- Jan Lebert
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Namita Ravi
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States.,Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jan Christoph
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Ehnesh M, Li X, Almeida TP, Chu GS, Dastagir N, Stafford PJ, Ng GA, Schlindwein FS. Evaluating spatial disparities of rotor sites and high dominant frequency regions during catheter ablation for PersAF patients targeting high dominant frequency sites using non-contacting mapping. Front Physiol 2022; 13:946718. [PMID: 35991173 PMCID: PMC9389330 DOI: 10.3389/fphys.2022.946718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose: Several studies have emphasised the significance of high dominant frequency (HDF) and rotors in the perpetuation of AF. However, the co-localisation relationship between both attributes is not completely understood yet. In this study, we aim to evaluate the spatial distributions of HDF regions and rotor sites within the left atrium (LA) pre and post HDF-guided ablation in PersAF. Methods: This study involved 10 PersAF patients undergoing catheter ablation targeting HDF regions in the LA. 2048-channels of atrial electrograms (AEG) were collected pre- and post-ablation using a non-contact array (EnSite, Abbott). The dominant frequency (DF, 4-10 Hz) areas with DF within 0.25 Hz of the maximum out of the 2048 points were defined as "high" DF (HDF). Rotors were defined as PSs that last more than 100 ms and at a similar location through subsequent phase frames over time. Results: The results indicated an extremely poor spatial correlation between the HDF regions and sites of the rotors in pre-versus post-ablation cases for the non-terminated (pre: CORR; 0.05 ± 0.17. vs. post: CORR; -0.030 ± 0.19, and with terminated patients (pre: CORR; -0.016 ± 0.03. post: CORR; -0.022 ± 0.04). Rotors associated with AF terminations had a long-lasting life-span post-ablation (non-terminated vs. terminated 120.7 ± 6.5 ms vs. 139.9 ± 39.8 ms), high core velocity (1.35 ± 1.3 mm/ms vs. 1.32 ± 0.9 mm/ms), and were less meandering (3.4 ± 3.04 mm vs. 1.5 ± 1.2 mm). Although the results suggest a poor spatial overlapping between rotors' sites and sites of AFCL changes in terminated and non-terminated patients, a higher correlation was determined in terminated patients (spatial overlapping percentage pre: 25 ± 4.2% vs. 17 ± 3.8% vs. post: 8 ± 4.2% vs. 3.7 ± 1.7% p < 0.05, respectively). Conclusion: Using non-contact AEG, it was noted that the correlation is poor between the spatial distribution of HDF regions and sites of rotors. Rotors were longer-lasting, faster and more stationary in patients with AF termination post-ablation. Rotors sites demonstrated poor spatial overlapping with sites of AFCL changes that lead to AF termination.
Collapse
Affiliation(s)
- Mahmoud Ehnesh
- School of Engineering, University of Leicester, Leicester, United Kingdom
- *Correspondence: Mahmoud Ehnesh,
| | - Xin Li
- School of Engineering, University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom
| | - Tiago P. Almeida
- School of Engineering, University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom
| | - Gavin S. Chu
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Leicester, United Kingdom
| | - Nawshin Dastagir
- Department of International Foundation, Massey University, Auckland, New Zealand
| | - Peter J. Stafford
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Leicester, United Kingdom
| | - G. André Ng
- Department of Cardiovascular Sciences, Glenfield Hospital, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Leicester, United Kingdom
| | - Fernando S. Schlindwein
- School of Engineering, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Leicester, United Kingdom
| |
Collapse
|
10
|
Masè M, Cristoforetti A, Del Greco M, Ravelli F. A Divergence-Based Approach for the Identification of Atrial Fibrillation Focal Drivers From Multipolar Mapping: A Computational Study. Front Physiol 2021; 12:749430. [PMID: 35002755 PMCID: PMC8740027 DOI: 10.3389/fphys.2021.749430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The expanding role of catheter ablation of atrial fibrillation (AF) has stimulated the development of novel mapping strategies to guide the procedure. We introduce a novel approach to characterize wave propagation and identify AF focal drivers from multipolar mapping data. The method reconstructs continuous activation patterns in the mapping area by a radial basis function (RBF) interpolation of multisite activation time series. Velocity vector fields are analytically determined, and the vector field divergence is used as a marker of focal drivers. The method was validated in a tissue patch cellular automaton model and in an anatomically realistic left atrial (LA) model with Courtemanche-Ramirez-Nattel ionic dynamics. Divergence analysis was effective in identifying focal drivers in a complex simulated AF pattern. Localization was reliable even with consistent reduction (47%) in the number of mapping points and in the presence of activation time misdetections (noise <10% of the cycle length). Proof-of-concept application of the method to human AF mapping data showed that divergence analysis consistently detected focal activation in the pulmonary veins and LA appendage area. These results suggest the potential of divergence analysis in combination with multipolar mapping to identify AF critical sites. Further studies on large clinical datasets may help to assess the clinical feasibility and benefit of divergence analysis for the optimization of ablation treatment.
Collapse
Affiliation(s)
- Michela Masè
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - Alessandro Cristoforetti
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Maurizio Del Greco
- Division of Cardiology, Santa Maria del Carmine Hospital, Rovereto, Italy
| | - Flavia Ravelli
- Laboratory of Biophysics and Translational Cardiology, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
- CISMed – Centre for Medical Sciences, University of Trento, Trento, Italy
| |
Collapse
|
11
|
He YJ, Li QH, Zhou K, Jiang R, Jiang C, Pan JT, Zheng D, Zheng B, Zhang H. Topological charge-density method of identifying phase singularities in cardiac fibrillation. Phys Rev E 2021; 104:014213. [PMID: 34412332 DOI: 10.1103/physreve.104.014213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 11/07/2022]
Abstract
Spiral waves represent the key motifs of typical self-sustained dynamical patterns in excitable systems such as cardiac tissue. The motion of phase singularities (PSs) that lies at the center of spiral waves captures many qualitative and, in some cases, quantitative features of their complex dynamics. Recent clinical studies suggested that ablating the tissue at PS locations may cure atrial fibrillation. Here, we propose a different method to determine the location of PSs. Starting from the definition of the topological charge of spiral waves, we obtain the expression of the topological charge density in a discrete case. With this expression, we can calculate the topological charge at each grid in the space directly, so as to accurately identify the position of PSs.
Collapse
Affiliation(s)
- Yin-Jie He
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Qi-Hao Li
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Kuangshi Zhou
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ruhong Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Chenyang Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jun-Ting Pan
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Dafang Zheng
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Bo Zheng
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China.,School of Physics and Astronomy, Yunnan University, Kunming 650091, China
| | - Hong Zhang
- Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Kulikov AA, Sapelnikov OV, Uskach TM, Cherkashin DI, Grishin IR, Akchurin RS. Rotor Drivers in Induction and Maintenance of Atrial Fibrillation. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2021. [DOI: 10.20996/1819-6446-2021-04-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atrial fibrillation is the most common arrhythmia in clinical practice. It is associated with an increased risk of stroke, chronic heart failure, and sudden cardiac death. Our options of restoring and maintaining sinus rhythm have a very limited effect, both in the case of antiarrhythmic and catheter treatment. Catheter ablation has proven to be a more effective approach than antiarrhythmic therapy. The success rate of the procedure reaches 70%. However, radiofrequency ablation is associated with a risk of complications, with 4.5% of patients likely to develop major complications, including tamponade (1.31%), femoral pseudoaneurysm (0.71%), and death (0.15%). Given the generally recognized dominant role of the pulmonary veins in the induction of atrial fibrillation, their electrical isolation has become the recommended tactic of the catheter approach. In the case of patients with paroxysmal form of atrial fibrillation, the success rate of the procedure reaches 87%. Unfortunately, in the case of persistent forms of atrial fibrillation, the effectiveness of the primary procedure decreases to 28% and reaches 51% with repeated interventions. In addition to the anatomically oriented isolation of the pulmonary veins, a number of strategies have been proposed to reach the secondary zones of atrial fibrillation induction. The results of recent studies on the effectiveness of strategies for ablation of rotor regions and their role in the induction and maintenance of AF may lead to the further development of catheter ablation techniques and an individual radiofrequency ablation approach in a particular patient.
Collapse
|
13
|
Li X, Chu GS, Almeida TP, Vanheusden FJ, Salinet J, Dastagir N, Mistry AR, Vali Z, Sidhu B, Stafford PJ, Schlindwein FS, Ng GA. Automatic Extraction of Recurrent Patterns of High Dominant Frequency Mapping During Human Persistent Atrial Fibrillation. Front Physiol 2021; 12:649486. [PMID: 33776801 PMCID: PMC7994862 DOI: 10.3389/fphys.2021.649486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose: Identifying targets for catheter ablation remains challenging in persistent atrial fibrillation (persAF). The dominant frequency (DF) of atrial electrograms during atrial fibrillation (AF) is believed to primarily reflect local activation. Highest DF (HDF) might be responsible for the initiation and perpetuation of persAF. However, the spatiotemporal behavior of DF remains not fully understood. Some DFs during persAF were shown to lack spatiotemporal stability, while others exhibit recurrent behavior. We sought to develop a tool to automatically detect recurrent DF patterns in persAF patients. Methods: Non-contact mapping of the left atrium (LA) was performed in 10 patients undergoing persAF HDF ablation. 2,048 virtual electrograms (vEGMs, EnSite Array, Abbott Laboratories, USA) were collected for up to 5 min before and after ablation. Frequency spectrum was estimated using fast Fourier transform and DF was identified as the peak between 4 and 10 Hz and organization index (OI) was calculated. The HDF maps were identified per 4-s window and an automated pattern recognition algorithm was used to find recurring HDF spatial patterns. Dominant patterns (DPs) were defined as the HDF pattern with the highest recurrence. Results: DPs were found in all patients. Patients in atrial flutter after ablation had a single DP over the recorded time period. The time interval (median [IQR]) of DP recurrence for the patients in AF after ablation (7 patients) decreased from 21.1 s [11.8 49.7 s] to 15.7 s [6.5 18.2 s]. The DF inside the DPs presented lower temporal standard deviation (0.18 ± 0.06 Hz vs. 0.29 ± 0.12 Hz, p < 0.05) and higher OI (0.35 ± 0.03 vs. 0.31 ± 0.04, p < 0.05). The atrial regions with the highest proportion of HDF region were the septum and the left upper pulmonary vein. Conclusion: Multiple recurrent spatiotemporal HDF patterns exist during persAF. The proposed method can identify and quantify the spatiotemporal repetition of the HDFs, where the high recurrences of DP may suggest a more organized rhythm. DPs presented a more consistent DF and higher organization compared with non-DPs, suggesting that DF with higher OI might be more likely to recur. Recurring patterns offer a more comprehensive dynamic insight of persAF behavior, and ablation targeting such regions may be beneficial.
Collapse
Affiliation(s)
- Xin Li
- Department of Cardiovascular Science, University of Leicester, Leicester, United Kingdom
- School of Engineering, University of Leicester, Leicester, United Kingdom
| | - Gavin S. Chu
- Department of Cardiovascular Science, University of Leicester, Leicester, United Kingdom
| | - Tiago P. Almeida
- Department of Cardiovascular Science, University of Leicester, Leicester, United Kingdom
- School of Engineering, University of Leicester, Leicester, United Kingdom
| | | | - João Salinet
- Biomedical Engineering, Centre for Engineering, Modelling and Applied Social Sciences (CECS), Federal University of ABC, Santo André, Brazil
| | - Nawshin Dastagir
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Amar R. Mistry
- Department of Cardiovascular Science, University of Leicester, Leicester, United Kingdom
| | - Zakariyya Vali
- Department of Cardiovascular Science, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Bharat Sidhu
- Department of Cardiovascular Science, University of Leicester, Leicester, United Kingdom
| | - Peter J. Stafford
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Fernando S. Schlindwein
- School of Engineering, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - G. André Ng
- Department of Cardiovascular Science, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|