1
|
Chang X, Liu R, Li R, Peng Y, Zhu P, Zhou H. Molecular Mechanisms of Mitochondrial Quality Control in Ischemic Cardiomyopathy. Int J Biol Sci 2023; 19:426-448. [PMID: 36632466 PMCID: PMC9830521 DOI: 10.7150/ijbs.76223] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemic cardiomyopathy (ICM) is a special type of coronary heart disease or an advanced stage of the disease, which is related to the pathological mechanism of primary dilated cardiomyopathy. Ischemic cardiomyopathy mainly occurs in the long-term myocardial ischemia, resulting in diffuse myocardial fibrosis. This in turn affects the cardiac ejection function, resulting in a significant impact on myocardial systolic and diastolic function, resulting in a decrease in the cardiac ejection fraction. The pathogenesis of ICM is closely related to coronary heart disease. Mainly due to coronary atherosclerosis caused by coronary stenosis or vascular occlusion, causing vascular inflammatory lesions and thrombosis. As the disease progresses, it leads to long-term myocardial ischemia and eventually ICM. The pathological mechanism is mainly related to the mechanisms of inflammation, myocardial hypertrophy, fibrosis and vascular remodeling. Mitochondria are organelles with a double-membrane structure, so the composition of the mitochondrial outer compartment is basically similar to that of the cytoplasm. When ischemia-reperfusion induces a large influx of calcium into the cell, the concentration of calcium ions in the mitochondrial outer compartment also increases. The subsequent opening of the membrane permeability transition pore in the inner mitochondrial membrane and the resulting calcium overload induces the homeostasis of cardiomyocytes and activates the mitochondrial pathway of apoptosis. Mitochondrial Quality Control (MQC), as an important mechanism for regulating mitochondrial function in cardiomyocytes, affects the morphological structure/function and lifespan of mitochondria. In this review, we discuss the role of MQC (including mitophagy, mitochondrial dynamics, and mitochondrial biosynthesis) in the pathogenesis of ICM and provide important evidence for targeting MQC for ICM.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruxiu Liu
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,✉ Corresponding authors: Hao Zhou, Senior Department of Cardiology, The Sixth Medical Centre of People's Liberation Army General Hospital, Beijing, China; E-mail: . Pingjun Zhu, Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; . Ruxiu Liu, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China; E-mail:
| | - Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Youyou Peng
- Montverde Future Academy Shanghai, 88 Jianhao Road, Pudong New District, Shanghai, China
| | - Pingjun Zhu
- Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,✉ Corresponding authors: Hao Zhou, Senior Department of Cardiology, The Sixth Medical Centre of People's Liberation Army General Hospital, Beijing, China; E-mail: . Pingjun Zhu, Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; . Ruxiu Liu, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China; E-mail:
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Centre of People's Liberation Army General Hospital, Beijing, China.,✉ Corresponding authors: Hao Zhou, Senior Department of Cardiology, The Sixth Medical Centre of People's Liberation Army General Hospital, Beijing, China; E-mail: . Pingjun Zhu, Department of Respiratory and Critical Care Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China; . Ruxiu Liu, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China; E-mail:
| |
Collapse
|
2
|
Jiang T, Wang Q, Lv J, Lin L. Mitochondria-endoplasmic reticulum contacts in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2022; 10:1036225. [PMID: 36506093 PMCID: PMC9730255 DOI: 10.3389/fcell.2022.1036225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial and endoplasmic reticulum (ER) are important intracellular organelles. The sites that mitochondrial and ER are closely related in structure and function are called Mitochondria-ER contacts (MERCs). MERCs are involved in a variety of biological processes, including calcium signaling, lipid synthesis and transport, autophagy, mitochondrial dynamics, ER stress, and inflammation. Sepsis-induced myocardial dysfunction (SIMD) is a vital organ damage caused by sepsis, which is closely associated with mitochondrial and ER dysfunction. Growing evidence strongly supports the role of MERCs in the pathogenesis of SIMD. In this review, we summarize the biological functions of MERCs and the roles of MERCs proteins in SIMD.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jiagao Lv, ; Li Lin, ,
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Jiagao Lv, ; Li Lin, ,
| |
Collapse
|
3
|
Zou HX, Qiu BQ, Zhang ZY, Hu T, Wan L, Liu JC, Huang H, Lai SQ. Dysregulated autophagy-related genes in septic cardiomyopathy: Comprehensive bioinformatics analysis based on the human transcriptomes and experimental validation. Front Cardiovasc Med 2022; 9:923066. [PMID: 35983185 PMCID: PMC9378994 DOI: 10.3389/fcvm.2022.923066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Septic cardiomyopathy (SCM) is severe organ dysfunction caused by sepsis that is associated with poor prognosis, and its pathobiological mechanisms remain unclear. Autophagy is a biological process that has recently been focused on SCM, yet the current understanding of the role of dysregulated autophagy in the pathogenesis of SCM remains limited and uncertain. Exploring the molecular mechanisms of disease based on the transcriptomes of human pathological samples may bring the closest insights. In this study, we analyzed the differential expression of autophagy-related genes in SCM based on the transcriptomes of human septic hearts, and further explored their potential crosstalk and functional pathways. Key functional module and hub genes were identified by constructing a protein–protein interaction network. Eight key genes (CCL2, MYC, TP53, SOD2, HIF1A, CTNNB1, CAT, and ADIPOQ) that regulate autophagy in SCM were identified after validation in a lipopolysaccharide (LPS)-induced H9c2 cardiomyoblast injury model, as well as the autophagic characteristic features. Furthermore, we found that key genes were associated with abnormal immune infiltration in septic hearts and have the potential to serve as biomarkers. Finally, we predicted drugs that may play a protective role in SCM by regulating autophagy based on our results. Our study provides evidence and new insights into the role of autophagy in SCM based on human septic heart transcriptomes, which would be of great benefit to reveal the molecular pathological mechanisms and explore the diagnostic and therapeutic targets for SCM.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ze-Yu Zhang
- Institute of Nanchang University Trauma Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tie Hu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Huang Huang,
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Song-Qing Lai,
| |
Collapse
|
4
|
Baradaran Rahimi V, Momeni-Moghaddam MA, Chini MG, Saviano A, Maione F, Bifulco G, Rahmanian-Devin P, Jebalbarezy A, Askari VR. Carnosol Attenuates LPS-Induced Inflammation of Cardiomyoblasts by Inhibiting NF- κB: A Mechanistic in Vitro and in Silico Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7969422. [PMID: 35571740 PMCID: PMC9095375 DOI: 10.1155/2022/7969422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 01/03/2023]
Abstract
Carnosol possesses several beneficial pharmacological properties. However, its role in lipopolysaccharide (LPS) induced inflammation and cardiomyocyte cell line (H9C2) has never been investigated. Therefore, the effect of carnosol and an NF-κB inhibitor BAY 11-7082 was examined, and the underlying role of the NF-κB-dependent inflammatory pathway was analyzed as the target enzyme. Cell viability, inflammatory cytokines levels (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and prostaglandin E 2 (PGE2)), and related gene expression (TNF-α, IL-1β, IL-6, and cyclooxygenase-2 (COX-2)) were analyzed by ELISA and real-time PCR. In addition, docking studies analyzed carnosol's molecular interactions and binding modes to NF-κB and IKK. We report that LPS caused the reduction of cell viability while enhancing both cytokines protein and mRNA levels (P < 0.001, for all cases). However, the BAY 11-7082 pretreatment of the cells and carnosol increased cell viability and reduced cytokine protein and mRNA levels (P < 0.001 vs. LPS, for all cases). Furthermore, our in silico analyses also supported the modulation of NF-κB and IKK by carnosol. This evidence highlights the defensive effects of carnosol against sepsis-induced myocardial dysfunction and, contextually, paved the rationale for the next in vitro and in vivo studies aimed to precisely describe its mechanism(s) of action.
Collapse
Affiliation(s)
- Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia I-86090, Italy
| | - Anella Saviano
- Immuno Pharma Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesco Maione
- Immuno Pharma Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, Salerno 84084, Italy
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jebalbarezy
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Sharma J, Madan P. Differential regulation of Hippo signaling pathway components between 8-cell and blastocyst stages of bovine preimplantation embryogenesis. Mol Reprod Dev 2022; 89:146-161. [PMID: 35243707 DOI: 10.1002/mrd.23564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022]
Abstract
The Hippo signaling pathway is an important regulator of lineage segregation (trophectoderm and inner cell mass) during blastocyst formation in the mouse embryos. However, the role and regulation of Hippo signaling pathway components during bovine embryonic development is not completely understood. This study was thus designed to interpret the roles of Hippo cell signaling pathway components using two different yet specific chemical inhibitors (Cerivastatin and XMU-MP-1). A significant decrease in the blastocyst rates were observed on treatment with Cerivastatin and XMU-MP-1 inhibitors for the treatment groups, in comparison to the control groups. At the 8-cell stage, a significant decrease was observed in the gene expression and nuclear protein localization of YAP1 (Yes Associated Protein 1) and pYAP1 components of Hippo signaling pathway. However, no such effect of Cerivastatin treatment was observed on the localization of TAZ at this cell stage. On the contrary, during bovine blastocyst formation a significant decrease in the gene expression and nuclear localization of both YAP1 and TAZ suggest differences in the regulation of these components at 8-cell and blastocyst stages of embryonic development. Furthermore, XMU-MP-1 mediated chemical inhibition of Mst1 at the blastocyst stage also suggests differences in the regulation of Yap1 and Taz components of Hippo signaling pathway. Overall, this study indicates novel differences in the regulation of Hippo signaling transcript levels and protein localization between the 8-cell and blastocyst stages of bovine preimplantation embryonic development.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Pavneesh Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Non-canonical role of Hippo tumor suppressor serine/threonine kinase 3 STK3 in prostate cancer. Mol Ther 2022; 30:485-500. [PMID: 34450249 PMCID: PMC8753456 DOI: 10.1016/j.ymthe.2021.08.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/14/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023] Open
Abstract
Serine/threonine kinase 3 (STK3) is an essential member of the highly conserved Hippo tumor suppressor pathway that regulates Yes-associated protein 1 (YAP1) and TAZ. STK3 and its paralog STK4 initiate a phosphorylation cascade that regulates YAP1/TAZ inhibition and degradation, which is important for regulated cell growth and organ size. Deregulation of this pathway leads to hyperactivation of YAP1 in various cancers. Counter to the canonical tumor suppression role of STK3, we report that in the context of prostate cancer (PC), STK3 has a pro-tumorigenic role. Our investigation started with the observation that STK3, but not STK4, is frequently amplified in PC. Additionally, high STK3 expression is associated with decreased overall survival and positively correlates with androgen receptor (AR) activity in metastatic castrate-resistant PC. XMU-MP-1, an STK3/4 inhibitor, slowed cell proliferation, spheroid growth, and Matrigel invasion in multiple models. Genetic depletion of STK3 decreased proliferation in several PC cell lines. In a syngeneic allograft model, STK3 loss slowed tumor growth kinetics in vivo, and biochemical analysis suggests a mitotic growth arrest phenotype. To further probe the role of STK3 in PC, we identified and validated a new set of selective STK3 inhibitors, with enhanced kinase selectivity relative to XMU-MP-1, that inhibited tumor spheroid growth and invasion. Consistent with the canonical role, inhibition of STK3 induced cardiomyocyte growth and had chemoprotective effects. Our results indicate that STK3 has a non-canonical role in PC progression and that inhibition of STK3 may have a therapeutic potential for PC that merits further investigation.
Collapse
|
7
|
Chen M, Li J, Wang J, Le Y, Liu C. SMYD1 alleviates septic myocardial injury by inhibiting endoplasmic reticulum stress. Biosci Biotechnol Biochem 2021; 85:2383-2391. [PMID: 34601561 DOI: 10.1093/bbb/zbab167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/21/2021] [Indexed: 11/14/2022]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a major complication of sepsis. SET and MYND domain containing 1 (SMYD1) has central importance in heart development, and its role in SIC has not been identified. Herein, we found that the expression of SMYD1 was downregulated in myocardial tissues of SIC patients (from GEO database: GSE79962) and lipopolysaccharide (LPS)-induced SIC rats, and LPS-induced H9c2 cardiomyocytes. We used LPS-stimulated H9c2 cells that mimic sepsis in vitro to explore the function of SMYD1 in SIC. MTT assay, LDH and CK-MB release assay, flow cytometry, and ELISA assay showed that SMYD1 overexpression enhanced cell viability, alleviated cell injury, impeded apoptosis, and reduced the level of proinflammatory factors and NF-κB activation under the condition of LPS stimulation. Moreover, SMYD1 exerted protective effect on H9c2 cells stimulated with LPS through relieving endoplasmic reticulum (ER) stress. In conclusion, overexpression of SMYD1 alleviates cardiac injury through relieving ER stress during sepsis.
Collapse
Affiliation(s)
- Meixue Chen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jing Li
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jinfeng Wang
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuan Le
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chunfeng Liu
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Chang X, Zhang T, Liu D, Meng Q, Yan P, Luo D, Wang X, Zhou X. Puerarin Attenuates LPS-Induced Inflammatory Responses and Oxidative Stress Injury in Human Umbilical Vein Endothelial Cells through Mitochondrial Quality Control. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6659240. [PMID: 33728025 PMCID: PMC7937474 DOI: 10.1155/2021/6659240] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is closely associated with the inflammatory reaction of vascular endothelial cells. Puerarin (Pue), the main active component isolated from the rhizome of Pueraria lobata, is an isoflavone compound with potent antioxidant properties. Although Pue exhibits promising antiatherosclerotic pharmacological effects, only a few studies have reported its protective effect on endothelial cells. This study found that Pue could partly regulate mitochondrial function in human umbilical vein endothelial cells (HUVECs) and reduce or inhibit lipopolysaccharide-induced inflammatory reactions and oxidative stress injury in HUVECs, likely via mitochondrial quality control. Furthermore, the protective effect of Pue on HUVECs was closely related to the SIRT-1 signaling pathway. Pue increased autophagy and mitochondrial antioxidant potential via increased SIRT-1 expression, reducing excessive production of ROS and inhibiting the expression of inflammatory factors and oxidative stress injury. Therefore, Pue may improve mitochondrial respiratory function and energy metabolism, increasing the vulnerability of HUVECs to an inflammatory state.
Collapse
Affiliation(s)
- Xing Chang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dong Liu
- Institute of the History of Chinese Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyan Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peizheng Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Duosheng Luo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xue Wang
- School of Business Macau University of Science and Technology, Taipa, Macau, China
| | - XiuTeng Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|