1
|
Lin S, Lin W, Zhong Z, Zhong H, Zhou T, Weng W. The Expression and Molecular Mechanisms of Matrix Metalloproteinase- 9 and Vascular Endothelial Growth Factor in Renal Interstitial Fibrosis in Rats. Curr Mol Med 2024; 24:1540-1549. [PMID: 37936436 DOI: 10.2174/0115665240264823231101103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE To explore a new approach for the treatment of renal interstitial fibrosis (RIF), we detected the expression of matrix metalloproteinase-9 (MMP9) and vascular endothelial growth factor (VEGF). METHODS Twenty-four male Sprague Dawley (SD) rats were randomly divided into 2- week normal control (2NC) group, 4-week NC (4NC) group, 2-week unilateral ureteral obstruction (2UUO) group, and 4-week UUO (4UUO) group. We performed left ureteral ligation on UUO groups. Then, we sacrificed the rats of the 2NC group and 2UUO group at 2 weeks and the other groups at 4 weeks after the surgery. Immunohistochemistry and western blot were applied to detect the expression of MMP9, VEGF, fibronectin (FN), type IV collagen (Col-IV), and transforming growth factor-β1 (TGF-β1). MMP9 levels reduced after UUO surgery. Its expression was less in the 4UUO group than in the 2UUO group (P<0.05). The expression of VEGF, TGF- β1, FN, and Col-IV was higher in UUO groups than in NC groups (P<0.05). The expression of these indicators was higher in the 4UUO group than in the 2UUO group (P<0.05). RESULTS In the correlation analysis, MMP9 levels in UUO groups had a negative correlation with the expression of TGF-β1, VEGF, Col-IV, FN, and RIF index (all P<0.05). In UUO groups, VEGF levels had a positive correlation with the expression of TGF-β1, Col-IV, FN, and RIF index (all P<0.05). CONCLUSION In conclusion, with the aggravation of RIF lesions, MMP9 levels decreased, and VEGF levels increased. Whether there is a mutual inhibition relationship between them remains to be confirmed by further experiments.
Collapse
Affiliation(s)
- Shujun Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Wenshan Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Zhiqing Zhong
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Hongzhen Zhong
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Wenjuan Weng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| |
Collapse
|
2
|
Liu J, Zhang D, Brahmandam A, Matsubara Y, Gao M, Tian J, Liu B, Shu C, Dardik A. Bioinformatics identifies predictors of arteriovenous fistula maturation. J Vasc Access 2024; 25:172-186. [PMID: 35686495 PMCID: PMC9734286 DOI: 10.1177/11297298221102298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Arteriovenous fistulae (AVF) are the preferred access for hemodialysis but still have poor rates of maturation and patency limiting their clinical use. The underlying mechanisms of venous remodeling remain poorly understood, and only limited numbers of unbiased approaches have been reported. METHODS Biological Gene Ontology (GO) term enrichment analysis and differentially expressed genes (DEG) analysis were performed for three AVF datasets. A microRNA enrichment analysis and L1000CDS2 query were performed to identify factors predicting AVF patency. RESULTS The inflammatory and immune responses were activated during both early and late phases of AVF maturation, with upregulation of neutrophil and leukocyte regulation, cytokine production, and cytokine-mediated signaling. In men with failed AVF, negative regulation of myeloid-leukocyte differentiation and regulation of macrophage activation were significantly upregulated. Compared to non-diabetic patients, diabetic patients had significantly reduced immune response-related enrichment such as cell activation in immune response, regulation of immune-effector process, and positive regulation of defense response; in addition, diabetic patients showed no enrichment of the immune response-regulating signaling pathway. CONCLUSIONS These data show coordinated, and differential regulation of genes associated with AVF maturation, and different patterns of several pathways are associated with sex differences in AVF failure. Inflammatory and immune responses are activated during AVF maturation and diabetes may impair AVF maturation by altering these responses. These findings suggest several novel molecular targets to improve sex specific AVF maturation.
Collapse
Affiliation(s)
- Jia Liu
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Division of Vascular Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Dingyao Zhang
- The Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Anand Brahmandam
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Division of Vascular Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Yutaka Matsubara
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Division of Vascular Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- The Department of Surgery and Sciences, Kyushu University, Fukuoka, Japan
| | - Mingjie Gao
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Division of Vascular Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Jingru Tian
- The Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Bing Liu
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Chang Shu
- Department of Vascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Alan Dardik
- The Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
- Division of Vascular Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Li J, Quan Y, Wu Z, Han J, Zhang Y, Javed HU, Ma C, Jiu S, Zhang C, Wang L, Wang S. EBR and JA regulate aroma substance biosynthesis in 'Ruidu Hongyu' grapevine berries by transcriptome and metabolite combined analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1185049. [PMID: 37346128 PMCID: PMC10279965 DOI: 10.3389/fpls.2023.1185049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Volatile compounds including terpenes, aldehyde, phenol, and alcohol are significantly contributed floral and fruity aromas to the Muscat variety. 'Ruidu Hongyu' grapevine is one of the newly developed grape varieties, and cultivation of this variety has been extended across China due to unique quality traits and taste. In this study, HS-SPME/GC-MS and transcriptome sequencing analysis were performed to evaluate the impact of exogenous 2,4-epibrassinolide (EBR), jasmonic acid (JA), and their signaling inhibitors brassinazole (Brz)/sodium diethyldithiocarbamate (DIECA) on the biosynthesis of aroma substances in 'Ruidu Hongyu' grapevine. According to the results, exogenous BR and JA promoted the accumulation of various aroma substances, including hexenal, 2-hexenal, nerol oxide, vanillin, hotrienol, terpineol, neral, nerol, geraniol, and geranic acid. After EBR and JA treatments, most of the genes responsible for terpene, aldehyde, and alcohol biosynthesis expressed at a higher level than the CK group. Relatively, EBR treatment could not only promote endogenous BR biosynthesis and metabolism but also elevate BR signaling transduction. JA treatment contributed to endogenous JA and MeJA accumulation, as well. Through transcriptome sequencing, a total of 3043, 903, 1470, and 607 DEGs were identified in JA vs. JD, JA vs. CK, BR vs. CK, and BR vs. Brz, respectively. There were more DEGs under both EBR and JA treatments at late fruit ripening stages. The findings of this study increase our understanding regarding aroma substances biosynthesis and endogenous BR/JA metabolism in response to exogenous EBR and JA signals.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Quan
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zishu Wu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayu Han
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ying Zhang
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Hafiz Umer Javed
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Martinez L, Rojas MG, Tabbara M, Pereira-Simon S, Santos Falcon N, Rauf MA, Challa A, Zigmond ZM, Griswold AJ, Duque JC, Lassance-Soares RM, Velazquez OC, Salman LH, Vazquez-Padron RI. The Transcriptomics of the Human Vein Transformation After Arteriovenous Fistula Anastomosis Uncovers Layer-Specific Remodeling and Hallmarks of Maturation Failure. Kidney Int Rep 2023; 8:837-850. [PMID: 37069981 PMCID: PMC10105062 DOI: 10.1016/j.ekir.2023.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction The molecular transformation of the human preaccess vein after arteriovenous fistula (AVF) creation is poorly understood. This limits our ability to design efficacious therapies to improve maturation outcomes. Methods Bulk RNA sequencing (RNA-seq) followed by paired bioinformatic analyses and validation assays were performed in 76 longitudinal vascular biopsies (veins and AVFs) from 38 patients with stage 5 chronic kidney disease or end-stage kidney disease undergoing surgeries for 2-stage AVF creation (19 matured, 19 failed). Results A total of 3637 transcripts were differentially expressed between veins and AVFs independent of maturation outcomes, with 80% upregulated in fistulas. The postoperative transcriptome demonstrated transcriptional activation of basement membrane and interstitial extracellular matrix (ECM) components, including preexisting and novel collagens, proteoglycans, hemostasis factors, and angiogenesis regulators. A postoperative intramural cytokine storm involved >80 chemokines, interleukins, and growth factors. Postoperative changes in ECM expression were differentially distributed in the AVF wall, with proteoglycans and fibrillar collagens predominantly found in the intima and media, respectively. Interestingly, upregulated matrisome genes were enough to make a crude separation of AVFs that failed from those with successful maturation. We identified 102 differentially expressed genes (DEGs) in association with AVF maturation failure, including upregulation of network collagen VIII in medial smooth muscle cells (SMCs) and downregulation of endothelial-predominant transcripts and ECM regulators. Conclusion This work delineates the molecular changes that characterize venous remodeling after AVF creation and those relevant to maturation failure. We provide an essential framework to streamline translational models and our search for antistenotic therapies.
Collapse
Affiliation(s)
- Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Miguel G. Rojas
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Simone Pereira-Simon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Nieves Santos Falcon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mohd Ahmar Rauf
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Akshara Challa
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Juan C. Duque
- Katz Family Division of Nephrology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Roberta M. Lassance-Soares
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Loay H. Salman
- Division of Nephrology, Albany Medical College, Albany, New York, USA
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Veterans Affairs Medical Center, Miami, Florida, USA
| |
Collapse
|
5
|
Identification and Validation of Hub Genes in the Stenosis of Arteriovenous Fistula. J Pers Med 2023; 13:jpm13020207. [PMID: 36836441 PMCID: PMC9962424 DOI: 10.3390/jpm13020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Arteriovenous fistula (AVF) is the most widely used hemodialysis vascular access in China. However, stenosis of the AVF limits its use. The mechanism of AVF stenosis is currently unknown. Therefore, the purpose of our study was to explore the mechanisms of AVF stenosis. In this study, we identified the differentially expressed genes (DEGs) based on the Gene Expression Omnibus (GEO) dataset (GSE39488) between venous segments of AVF and normal veins. A protein-protein interaction (PPI) network was constructed to identify hub genes of AVF stenosis. Finally, six hub genes (FOS, NR4A2, EGR2, CXCR4, ATF3, and SERPINE1) were found. Combined with the results of the PPI network analysis and literature search, FOS and NR4A2 were selected as the target genes for further investigation. We validated the bioinformatic results via reverse transcription PCR (RT-PCR) and Western blot analyses on human and rat samples. The expression levels of the mRNA and protein of FOS and NR4A2 were upregulated in both human and rat samples. In summary, we found that FOS may play an important role in AVF stenosis, which could be a potential therapeutic target of AVF stenosis.
Collapse
|
6
|
Ma X, Zhang X, Leng T, Ma J, Yuan Z, Gu Y, Hu T, Liu Q, Shen T. Identification of Oxidative Stress-Related Biomarkers in Diabetic Kidney Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1067504. [PMID: 36624863 PMCID: PMC9825216 DOI: 10.1155/2022/1067504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease throughout the world. In kidney disease, oxidative stress has been linked to both antioxidant depletions and increased reactive oxygen species (ROS) production. Thus, the objective of this study was to identify biomarkers related to oxidative stress in DKD. METHODS The gene expression profile of the DKD was extracted from the Gene Expression Omnibus (GEO) database. The identification of the differentially expressed genes (DEGs) was performed using the "limma" R package, and weighted gene coexpression network analysis (WGCNA) was used to find the gene modules that were most related to DKD. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed using "Org.Hs.eg.db" R package. The protein-protein interaction (PPI) network was constructed using the STRING database. The hub genes were identified by the Molecular Complex Detection (MCODE) plug-in of Cytoscape software. The diagnostic capacity of hub genes was verified using the receiver operating characteristic (ROC) curve. Correlations between diagnostic genes were analyzed using the "corrplot" package. In addition, the miRNA gene transcription factor (TF) network was used to explain the regulatory mechanism of hub genes in DKD. RESULTS DEGs analysis and WGCNA-identified 160 key genes were identified in DKD patients. Among them, nine oxidative stress-related genes were identified as candidate hub genes for DKD. Using the PPI network, five hub genes, NR4A2, DUSP1, FOS, JUN, and PTGS2, were subsequently identified. All the hub genes were downregulated in DKD and had a high diagnostic value of DKD. The regulatory mechanism of hub genes was analyzed from the miRNA gene-TF network. CONCLUSION Our study identified NR4A2, DUSP1, FOS, JUN, and PTGS2 as hub genes of DKD. These genes may serve as potential therapeutic targets for DKD patients.
Collapse
Affiliation(s)
- Xiaoju Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tian Leng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingru Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhongzhu Yuan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yalin Gu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
7
|
Sex Differences in Arteriovenous Fistula Failure: Insights from Bioinformatics Analysis. J Cardiovasc Dev Dis 2022; 10:jcdd10010003. [PMID: 36661898 PMCID: PMC9862581 DOI: 10.3390/jcdd10010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Arteriovenous fistulas (AVFs) are the preferred access for hemodialysis. Unfortunately, about 60% of patients, especially female patients, fail to receive normal dialysis within one year after surgery because of AVF failure. However, the underlying mechanisms caused by sex differences in AVF failure remain unclear. (2) Methods: We performed analysis of DEGs and functional analysis with the dataset GSE119296 to reveal the biology underlying AVF failure. Immune responses were calculated using CIBERSORT. A protein-protein interaction network and hub gene were constructed using STRING and stepwise identification of potential drugs was performed online. (3) Results: Functional analysis showed that extracellular matrix reprogramming and PI3K-AKT pathway enrichment were significant in both male and female patients. COL1A1 was the hub gene in male patients, whereas CDK1 was the hub gene in female patients. Immune responses including γδ-T cells and mast cells are activated in female patients while no significant differences were noted in the male group. (4) Conclusions: In this study, we used a series of mature and recognized bioinformatic strategies to determine the following items: (1) Reveal the pathogenesis of AVF failure through HUB genes and signaling pathways between the different sexes. (2) Determine the relationship between sex differences in AVF failure and immune abnormalities. (3) Search for relevant sex-specific drugs targeting AVF failure.
Collapse
|
8
|
Wang X, He B, Deng Y, Liu J, Zhang Z, Sun W, Gao Y, Liu X, Zhen Y, Ye Z, Liu P, Wen J. Identification of a biomarker and immune infiltration in perivascular adipose tissue of abdominal aortic aneurysm. Front Physiol 2022; 13:977910. [PMID: 36187757 PMCID: PMC9523244 DOI: 10.3389/fphys.2022.977910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Abdominal aortic aneurysm (AAA) refers to unusual permanent dilation of the abdominal aorta, and gradual AAA expansion can lead to fatal rupture. However, we lack clear understanding of the pathogenesis of this disease. The effect of perivascular adipose tissue (PVAT) on vascular functional status has attracted increasing attention. Here, we try to identify the potential mechanisms linking AAA and PVAT. Methods: We downloaded dataset GSE119717, including 30 dilated AAA PVAT samples and 30 non-dilated aorta PVAT samples from AAA cases, from Gene Expression Omnibus to identify differentially expressed genes (DEGs). We performed pathway enrichment analysis by Metascape, ClueGo and DAVID to annotate PVAT functional status according to the DEGs. A protein-protein interaction network, the support vector machine (SVM)-recursive feature elimination and the least absolute shrinkage and selection operator regression model were constructed to identify feature genes. Immune infiltration analysis was explored by CIBERSORT. And the correlation between feature gene and immune cells was also calculated. Finally, we used the angiotensin II (Ang II)-ApoE−/− mouse model of AAA to verify the effect of feature gene expression by confirming protein expression using immunohistochemistry and western blot. Results: We identified 22 DEGs, including 21 upregulated genes and 1 downregulated gene. The DEGs were mainly enriched in neutrophil chemotaxis and IL-17 signaling pathway. FOS was identified as a good diagnostic feature gene (AUC = 0.964). Immune infiltration analysis showed a higher level of T cells follicular helper, activated NK cells, Monocytes, activated Mast cells in AAA group. And FOS was correlated with immune cells. Immunohistochemistry and western blot confirmed higher FOS expression in PVAT of the AAA mouse model compared to control group. Conclusion: The differentially expressed genes and pathways identified in this study provide further understanding of how PVAT affects AAA development. FOS was identified as the diagnostic gene. There was an obvious difference in immune cells infiltration between normal and AAA groups.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Bin He
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yisen Deng
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jingwen Liu
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Zhaohua Zhang
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Weiliang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jianyan Wen, ; Peng Liu,
| | - Jianyan Wen
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jianyan Wen, ; Peng Liu,
| |
Collapse
|
9
|
Zhao Z, Fu Q, Hu L, Liu Y. Identification of the Crucial Gene in Overflow Arteriovenous Fistula by Bioinformatics Analysis. Front Physiol 2021; 12:621830. [PMID: 34421628 PMCID: PMC8371383 DOI: 10.3389/fphys.2021.621830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim was to study the preliminary screening of the crucial genes in intimal hyperplasia in the venous segment of arteriovenous (AV) fistula and the underlying potential molecular mechanisms of intimal hyperplasia with bioinformatics analysis. Methods: The gene expression profile data (GSE39488) was analyzed to identify differentially expressed genes (DEGs). We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of DEGs. Gene set enrichment analysis (GSEA) was used to understand the potential activated signaling pathway. The protein-protein interaction (PPI) network was constructed with the STRING database and Cytoscape software. The Venn diagram between 10 hub genes and gene sets of 4 crucial signaling pathways was used to obtain core genes and relevant potential pathways. Furthermore, GSEAs were performed to understand their biological functions. Results: A total of 185 DEGs were screened in this study. The main biological function of the 111 upregulated genes in AV fistula primarily concentrated on cell proliferation and vascular remodeling, and the 74 downregulated genes in AV fistula were enriched in the biological function mainly relevant to inflammation. GSEA found four signaling pathways crucial for intimal hyperplasia, namely, MAPK, NOD-like, Cell Cycle, and TGF-beta signaling pathway. A total of 10 hub genes were identified, namely, EGR1, EGR2, EGR3, NR4A1, NR4A2, DUSP1, CXCR4, ATF3, CCL4, and CYR61. Particularly, DUSP1 and NR4A1 were identified as core genes that potentially participate in the MAPK signaling pathway. In AV fistula, the biological processes and pathways were primarily involved with MAPK signaling pathway and MAPK-mediated pathway with the high expression of DUSP1 and were highly relevant to cell proliferation and inflammation with the low expression of DUSP1. Besides, the biological processes and pathways in AV fistula with the high expression of NR4A1 similarly included the MAPK signaling pathway and the pathway mediated by MAPK signaling, and it was mainly involved with inflammation in AV fistula with the low expression of NR4A1. Conclusion: We screened four potential signaling pathways relevant to intimal hyperplasia and identified 10 hub genes, including two core genes (i.e., DUSP1 and NR4A1). Two core genes potentially participate in the MAPK signaling pathway and might serve as the therapeutic targets of intimal hyperplasia to prevent stenosis after AV fistula creation.
Collapse
Affiliation(s)
- Zhengde Zhao
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qining Fu
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangzhu Hu
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Vascular Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yangdong Liu
- First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Vascular Surgery, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|