1
|
Ma R, Xue M, Ge F, Jueraitetibaike K, Zhao S, Qian Z, He Z, Zhang H, Tang T, Cao C, Li C, Zheng L, Xue T, Dong J, Jing J, Zhong J, Ma J, Yang Y, Huang Y, Ge X, Yao B, Chen L. Melatonin protects aged oocytes from depalmitoylation-mediated quality reduction by promoting PPT1 degradation and antioxidation. Redox Biol 2025; 80:103510. [PMID: 39862447 PMCID: PMC11803875 DOI: 10.1016/j.redox.2025.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
Oocyte aging is closely related to a decline in female fertility, accompanied by increased reactive oxygen species levels and changes in protein posttranslational modifications. However, the role of protein palmitoylation in oocyte aging has not been investigated. In the present study, a new association between redox and palmitoylation in aging oocytes was found. We found that the protein level of palmitoyl-protein thioesterase 1 (PPT1), a depalmitoylation enzyme, was increased in maternally aged mice oocytes and follicular fluid of aged (age >35 years) patients with decreased ovarian reserve (DOR). Elevated PPT1 led to decreased S-palmitoylation levels in oocytes, which impaired oocyte maturation and spindle formation. Tubulin was identified as a critical palmitoylated protein regulated by PPT1, whose palmitoylation was also decreased by advanced age, accompanied by abnormalities in membrane localization and microtubule polymerization. Melatonin was found to down-regulate excessive PPT1 and rescue PPT1-induced damage in mouse oocytes, not only by regulating oxidative stress, but also by binding with PPT1 to regulate its lysosomal degradation. In summary, our data demonstrate that PPT1 participates in oocyte aging by regulating tubulin palmitoylation, providing evidence that oxidative stress regulates protein palmitoylation and revealing a novel mechanism of oocyte aging.
Collapse
Affiliation(s)
- Rujun Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Mengqi Xue
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Feiyan Ge
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Kadiliya Jueraitetibaike
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Shanmeizi Zhao
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Zhang Qian
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Zhaowanyue He
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Hong Zhang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Ting Tang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Chun Cao
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Chuwei Li
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Lu Zheng
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Tongmin Xue
- Reproductive Medical Center, Clinical Medical College (Northern Jiangsu People's Hospital), Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Jie Dong
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Jun Jing
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jian Zhong
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210004, China
| | - Jinzhao Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yang Yang
- Clinical Laboratory, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China.
| | - Xie Ge
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
| | - Bing Yao
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
| | - Li Chen
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
| |
Collapse
|
2
|
Gopal Krishnan PD, Lee WX, Goh KY, Choy SM, Turqueza LRR, Lim ZH, Tang HW. Transcriptional regulation of autophagy in skeletal muscle stem cells. Dis Model Mech 2025; 18:DMM052007. [PMID: 39925192 PMCID: PMC11849978 DOI: 10.1242/dmm.052007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for the regenerative capabilities of skeletal muscles. MuSCs are maintained in a quiescent state, but, when activated, can undergo proliferation and differentiation into myocytes, which fuse and mature to generate muscle fibers. The maintenance of MuSC quiescence and MuSC activation are processes that are tightly regulated by autophagy, a conserved degradation system that removes unessential or dysfunctional cellular components via lysosomes. Both the upregulation and downregulation of autophagy have been linked to impaired muscle regeneration, causing myopathies such as cancer cachexia, sarcopenia and Duchenne muscular dystrophy. In this Review, we highlight the importance of autophagy in regulating MuSC activity during muscle regeneration. Additionally, we summarize recent studies that link the transcriptional dysregulation of autophagy to muscle atrophy, emphasizing the dominant roles that transcription factors play in myogenic programs. Deciphering and understanding the roles of these transcription factors in the regulation of autophagy during myogenesis could advance the development of regenerative medicine.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | - Zhuo Han Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
3
|
Zhao Y, Xu X, Wang Y, Wu LD, Luo RL, Xia RP. Tumor purity-associated genes influence hepatocellular carcinoma prognosis and tumor microenvironment. Front Oncol 2023; 13:1197898. [PMID: 37434985 PMCID: PMC10330704 DOI: 10.3389/fonc.2023.1197898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Tumor purity takes on critical significance to the progression of solid tumors. The aim of this study was at exploring potential prognostic genes correlated with tumor purity in hepatocellular carcinoma (HCC) by bioinformatics analysis. Methods The ESTIMATE algorithm was applied for determining the tumor purity of HCC samples from The Cancer Genome Atlas (TCGA). The tumor purity-associated genes with differential expression (DEGs) were identified based on overlap analysis, weighted gene co-expression network analysis (WGCNA), and differential expression analysis. The prognostic genes were identified in terms of the prognostic model construction based on the Kaplan-Meier (K-M) survival analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses. The expression of the above-described genes was further validated by the GSE105130 dataset from the Gene Expression Omnibus (GEO) database. We also characterized the clinical and immunophenotypes of prognostic genes. Gene set enrichment analysis (GSEA) was carried out for exploring the biological signaling pathway. Results A total of 26 tumor purity-associated DEGs were identified, which were involved in biological processes such as immune/inflammatory responses and fatty acid elongation. Ultimately, we identified ADCK3, HK3, and PPT1 as the prognostic genes for HCC. Moreover, HCC patients exhibiting higher ADCK3 expression and lower HK3 and PPT1 expressions had a better prognosis. Furthermore, high HK3 and PPT1 expressions and low ADCK3 expression resulted in high tumor purity, high immune score, high stromal score, and high ESTIMATE score. GSEA showed that the abovementioned prognostic genes showed a significant correlation with immune-inflammatory response, tumor growth, and fatty acid production/degradation. Discussion In conclusion, this study identified novel predictive biomarkers (ADCK3, HK3, and PPT1) and studied the underlying molecular mechanisms of HCC pathology initially.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Organ Transplantation, Kunming Medical University First Affiliated Hospital, Kunming, China
| | - Xu Xu
- Department of Urology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yue Wang
- Department of Organ Transplantation, Kunming Medical University First Affiliated Hospital, Kunming, China
| | - Lin D. Wu
- Department of Organ Transplantation, Kunming Medical University First Affiliated Hospital, Kunming, China
| | - Rui L. Luo
- Department of Urology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ren P. Xia
- Department of Organ Transplantation, Kunming Medical University First Affiliated Hospital, Kunming, China
| |
Collapse
|
4
|
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ. Autophagy in the Neuronal Ceroid Lipofuscinoses (Batten Disease). Front Cell Dev Biol 2022; 10:812728. [PMID: 35252181 PMCID: PMC8888908 DOI: 10.3389/fcell.2022.812728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aruban Thanabalasingam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre D'Excellence en Recherche sur Les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université Du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Susan L. Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, United States
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|