Morales Tellez JF, Moeyersons J, Testelmans D, Buyse B, Borzée P, Van Hoof C, Groenendaal W, Van Huffel S, Varon C. Technical aspects of cardiorespiratory estimation using subspace projections and cross entropy.
Physiol Meas 2021;
42. [PMID:
34571494 DOI:
10.1088/1361-6579/ac2a70]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND
Respiratory sinus arrhythmia (RSA) is a form of cardiorespiratory coupling. Its quantification has been suggested as a biomarker to diagnose different diseases. Two state-of-the-art methods, based on subspace projections and entropy, are used to estimate the RSA strength and are evaluated in this paper. Their computation requires the selection of a model order, and their performance is strongly related to the temporal and spectral characteristics of the cardiorespiratory signals.
OBJECTIVE
To evaluate the robustness of the RSA estimates to the selection of model order, delays, changes of phase and irregular heartbeats as well as to give recommendations for their interpretation on each case.
APPROACH
Simulations were used to evaluate the model order selection when calculating the RSA estimates explained before, as well as 3 different scenarios that can occur in signals acquired in non-controlled environments and/or from patient populations: the presence of irregular heartbeats; the occurrence of delays between heart rate variability (HRV) and respiratory signals; and the changes over time of the phase between HRV and respiratory signals.
MAIN RESULTS
It was found that using a single model order for all the calculations suffices to characterize the RSA estimates correctly. In addition, the RSA estimation in signals containing more than 5 irregular heartbeats in a period of 5 minutes might be misleading. Regarding the delays between HRV and respiratory signals, both estimates are robust. For the last scenario, the two approaches tolerate phase changes up to 54°, as long as this lasts less than one fifth of the recording duration.
SIGNIFICANCE
Guidelines are given to compute the RSA estimates in non-controlled environments and patient populations.
Collapse