1
|
Lyzwinski LN, Elgendi M, Menon C. The Use of Photoplethysmography in the Assessment of Mental Health: Scoping Review. JMIR Ment Health 2023; 10:e40163. [PMID: 37247209 PMCID: PMC10262030 DOI: 10.2196/40163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND With the rise in mental health problems globally, mobile health provides opportunities for timely medical care and accessibility. One emerging area of mobile health involves the use of photoplethysmography (PPG) to assess and monitor mental health. OBJECTIVE In recent years, there has been an increase in the use of PPG-based technology for mental health. Therefore, we conducted a review to understand how PPG has been evaluated to assess a range of mental health and psychological problems, including stress, depression, and anxiety. METHODS A scoping review was performed using PubMed and Google Scholar databases. RESULTS A total of 24 papers met the inclusion criteria and were included in this review. We identified studies that assessed mental health via PPG using finger- and face-based methods as well as smartphone-based methods. There was variation in study quality. PPG holds promise as a potential complementary technology for detecting changes in mental health, including depression and anxiety. However, rigorous validation is needed in diverse clinical populations to advance PPG technology in tackling mental health problems. CONCLUSIONS PPG holds promise for assessing mental health problems; however, more research is required before it can be widely recommended for clinical use.
Collapse
Affiliation(s)
- Lynnette Nathalie Lyzwinski
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Vancouver, BC, Canada
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Vancouver, BC, Canada
- Biomedical and Mobile Health Technology Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Bautista MJ, Kowal M, Cave DGW, Downey C, Jayne DG. Clinical applications of contactless photoplethysmography for monitoring in adults: A systematic review and meta-analysis. J Clin Transl Sci 2023; 7:e129. [PMID: 37313385 PMCID: PMC10260340 DOI: 10.1017/cts.2023.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/15/2023] Open
Abstract
Contactless photoplethysmography (cPPG) is a method of physiological monitoring. It differs from conventional monitoring methods (e.g., saturation probe) by ensuring no contact with the subject by use of a camera. The majority of research on cPPG is conducted in a laboratory setting or in healthy populations. This review aims to evaluate the current literature on monitoring using cPPG in adults within a clinical setting. Adhering to the Preferred Items for Systematic Reviews and Meta-analysis (PRISMA, 2020) guidelines, OVID, Webofscience, Cochrane library, and clinicaltrials.org were systematically searched by two researchers. Research articles using cPPG for monitoring purposes in adults within a clinical setting were selected. Twelve studies with a total of 654 individuals were included. Heart rate (HR) was the most investigated vital sign (n = 8) followed by respiratory rate ((n = 2), Sp02 (n = 2), and HR variability (n = 2). Four studies were included in a meta-analysis of HR compared to ECG data which demonstrated a mean bias of -0.13 (95% CI, -1.22-0.96). This study demonstrates cPPG can be a useful tool in the remote monitoring of patients and has demonstrated accuracy for HR. However, further research is needed into the clinical applications of this method.
Collapse
|
3
|
Sato S, Hiratsuka T, Hasegawa K, Watanabe K, Obara Y, Kariya N, Shinba T, Matsui T. Screening for Major Depressive Disorder Using a Wearable Ultra-Short-Term HRV Monitor and Signal Quality Indices. SENSORS (BASEL, SWITZERLAND) 2023; 23:3867. [PMID: 37112208 PMCID: PMC10143236 DOI: 10.3390/s23083867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
To encourage potential major depressive disorder (MDD) patients to attend diagnostic sessions, we developed a novel MDD screening system based on sleep-induced autonomic nervous responses. The proposed method only requires a wristwatch device to be worn for 24 h. We evaluated heart rate variability (HRV) via wrist photoplethysmography (PPG). However, previous studies have indicated that HRV measurements obtained using wearable devices are susceptible to motion artifacts. We propose a novel method to improve screening accuracy by removing unreliable HRV data (identified on the basis of signal quality indices (SQIs) obtained by PPG sensors). The proposed algorithm enables real-time calculation of signal quality indices in the frequency domain (SQI-FD). A clinical study conducted at Maynds Tower Mental Clinic enrolled 40 MDD patients (mean age, 37.5 ± 8.8 years) diagnosed on the basis of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, and 29 healthy volunteers (mean age, 31.9 ± 13.0 years). Acceleration data were used to identify sleep states, and a linear classification model was trained and tested using HRV and pulse rate data. Ten-fold cross-validation showed a sensitivity of 87.3% (80.3% without SQI-FD data) and specificity of 84.0% (73.3% without SQI-FD data). Thus, SQI-FD drastically improved sensitivity and specificity.
Collapse
Affiliation(s)
- Shohei Sato
- Department of Electrical Engineering and Computer Science, Faculty of Systems Design, Tokyo Metropolitan University, Tokyo 191-0065, Japan
| | - Takuma Hiratsuka
- Department of Electrical Engineering and Computer Science, Faculty of Systems Design, Tokyo Metropolitan University, Tokyo 191-0065, Japan
| | - Kenya Hasegawa
- Department of Electrical Engineering and Computer Science, Faculty of Systems Design, Tokyo Metropolitan University, Tokyo 191-0065, Japan
| | - Keisuke Watanabe
- Department of Electrical Engineering and Computer Science, Faculty of Systems Design, Tokyo Metropolitan University, Tokyo 191-0065, Japan
| | - Yusuke Obara
- Maynds Tower Mental Clinic, Tokyo 151-0053, Japan
| | | | - Toshikazu Shinba
- Department of Psychiatry, Shizuoka Saiseikai General Hospital, Shizuoka 422-8527, Japan
- Research Division, Saiseikai Research Institute of Health Care and Welfare, Tokyo 108-0073, Japan
| | - Takemi Matsui
- Department of Electrical Engineering and Computer Science, Graduate School of System Design, Tokyo Metropolitan University, Tokyo 191-0065, Japan
| |
Collapse
|
4
|
Li M, Liu Y, Liu Y, Pu C, Yin R, Zeng Z, Deng L, Wang X. Resting-state EEG-based convolutional neural network for the diagnosis of depression and its severity. Front Physiol 2022; 13:956254. [PMID: 36299253 PMCID: PMC9589234 DOI: 10.3389/fphys.2022.956254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: The study aimed to assess the value of the resting-state electroencephalogram (EEG)-based convolutional neural network (CNN) method for the diagnosis of depression and its severity in order to better serve depressed patients and at-risk populations. Methods: In this study, we used the resting state EEG-based CNN to identify depression and evaluated its severity. The EEG data were collected from depressed patients and healthy people using the Nihon Kohden EEG-1200 system. Analytical processing of resting-state EEG data was performed using Python and MATLAB software applications. The questionnaire included the Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS), Symptom Check-List-90 (SCL-90), and the Eysenck Personality Questionnaire (EPQ). Results: A total of 82 subjects were included in this study, with 41 in the depression group and 41 in the healthy control group. The area under the curve (AUC) of the resting-state EEG-based CNN in depression diagnosis was 0.74 (95%CI: 0.70–0.77) with an accuracy of 66.40%. In the depression group, the SDS, SAS, SCL-90 subscales, and N scores were significantly higher in the major depression group than those in the non-major depression group (p < 0.05). The AUC of the model in depression severity was 0.70 (95%CI: 0.65–0.75) with an accuracy of 66.93%. Correlation analysis revealed that major depression AI scores were significantly correlated with SAS scores (r = 0.508, p = 0.003) and SDS scores (r = 0.765, p < 0.001). Conclusion: Our model can accurately identify the depression-specific EEG signal in terms of depression diagnosis and severity identification. It would eventually provide new strategies for early diagnosis of depression and its severity.
Collapse
Affiliation(s)
- Mengqian Li
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Liu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Liu
- Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Changqin Pu
- Queen Mary College, Nanchang University, Nanchang, China
| | - Ruocheng Yin
- Queen Mary College, Nanchang University, Nanchang, China
| | - Ziqiang Zeng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, China
| | - Libin Deng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
- *Correspondence: Libin Deng, ; Xing Wang,
| | - Xing Wang
- School of Life Sciences, Nanchang University, Nanchang, China
- Clinical Medical Experiment Center, Nanchang University, Nanchang, China
- *Correspondence: Libin Deng, ; Xing Wang,
| |
Collapse
|
5
|
Unursaikhan B, Amarsanaa G, Sun G, Hashimoto K, Purevsuren O, Choimaa L, Matsui T. Development of a Novel Vital-Signs-Based Infection Screening Composite-Type Camera With Truncus Motion Removal Algorithm to Detect COVID-19 Within 10 Seconds and Its Clinical Validation. Front Physiol 2022; 13:905931. [PMID: 35812332 PMCID: PMC9257080 DOI: 10.3389/fphys.2022.905931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: To conduct a rapid preliminary COVID-19 screening prior to polymerase chain reaction (PCR) test under clinical settings, including patient’s body moving conditions in a non-contact manner, we developed a mobile and vital-signs-based infection screening composite-type camera (VISC-Camera) with truncus motion removal algorithm (TMRA) to screen for possibly infected patients. Methods: The VISC-Camera incorporates a stereo depth camera for respiratory rate (RR) determination, a red–green–blue (RGB) camera for heart rate (HR) estimation, and a thermal camera for body temperature (BT) measurement. In addition to the body motion removal algorithm based on the region of interest (ROI) tracking for RR, HR, and BT determination, we adopted TMRA for RR estimation. TMRA is a reduction algorithm of RR count error induced by truncus non-respiratory front-back motion measured using depth-camera-determined neck movement. The VISC-Camera is designed for mobile use and is compact (22 cm × 14 cm × 4 cm), light (800 g), and can be used in continuous operation for over 100 patients with a single battery charge. The VISC-Camera discriminates infected patients from healthy people using a logistic regression algorithm using RR, HR, and BT as explanatory variables. Results are available within 10 s, including imaging and processing time. Clinical testing was conducted on 154 PCR positive COVID-19 inpatients (aged 18–81 years; M/F = 87/67) within the initial 48 h of hospitalization at the First Central Hospital of Mongolia and 147 healthy volunteers (aged 18–85 years, M/F = 70/77). All patients were on treatment with antivirals and had body temperatures <37.5°C. RR measured by visual counting, pulsimeter-determined HR, and BT determined by thermometer were used for references. Result: 10-fold cross-validation revealed 91% sensitivity and 90% specificity with an area under receiver operating characteristic curve of 0.97. The VISC-Camera-determined HR, RR, and BT correlated significantly with those measured using references (RR: r = 0.93, p < 0.001; HR: r = 0.97, p < 0.001; BT: r = 0.72, p < 0.001). Conclusion: Under clinical settings with body motion, the VISC-Camera with TMRA appears promising for the preliminary screening of potential COVID-19 infection for afebrile patients with the possibility of misdiagnosis as asymptomatic.
Collapse
Affiliation(s)
- Batbayar Unursaikhan
- Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
- Machine Intelligence Laboratory, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | | | - Guanghao Sun
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| | - Kenichi Hashimoto
- Department of General Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Otgonbat Purevsuren
- Machine Intelligence Laboratory, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Lodoiravsal Choimaa
- Machine Intelligence Laboratory, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Takemi Matsui
- Graduate School of Systems Design, Tokyo Metropolitan University, Hachioji, Japan
- *Correspondence: Takemi Matsui,
| |
Collapse
|
6
|
Molinaro N, Schena E, Silvestri S, Massaroni C. Multi-ROI Spectral Approach for the Continuous Remote Cardio-Respiratory Monitoring from Mobile Device Built-In Cameras. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22072539. [PMID: 35408151 PMCID: PMC9002464 DOI: 10.3390/s22072539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 05/05/2023]
Abstract
Heart rate (HR) and respiratory rate (fR) can be estimated by processing videos framing the upper body and face regions without any physical contact with the subject. This paper proposed a technique for continuously monitoring HR and fR via a multi-ROI approach based on the spectral analysis of RGB video frames recorded with a mobile device (i.e., a smartphone's camera). The respiratory signal was estimated by the motion of the chest, whereas the cardiac signal was retrieved from the pulsatile activity at the level of right and left cheeks and forehead. Videos were recorded from 18 healthy volunteers in four sessions with different user-camera distances (i.e., 0.5 m and 1.0 m) and illumination conditions (i.e., natural and artificial light). For HR estimation, three approaches were investigated based on single or multi-ROI approaches. A commercially available multiparametric device was used to record reference respiratory signals and electrocardiogram (ECG). The results demonstrated that the multi-ROI approach outperforms the single-ROI approach providing temporal trends of both the vital parameters comparable to those provided by the reference, with a mean absolute error (MAE) consistently below 1 breaths·min-1 for fR in all the scenarios, and a MAE between 0.7 bpm and 6 bpm for HR estimation, whose values increase at higher distances.
Collapse
Affiliation(s)
- Nunzia Molinaro
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Sergio Silvestri
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
7
|
Contactless Vital Sign Monitoring System for Heart and Respiratory Rate Measurements with Motion Compensation Using a Near-Infrared Time-of-Flight Camera. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study describes a contactless vital sign monitoring (CVSM) system capable of measuring heart rate (HR) and respiration rate (RR) using a low-power, indirect time-of-flight (ToF) camera. The system takes advantage of both the active infrared illumination as well as the additional depth information from the ToF camera to compensate for the motion-induced artifacts during the HR measurements. The depth information captures how the user is moving with respect to the camera and, therefore, can be used to differentiate where the intensity change in the raw signal is from the underlying heartbeat or motion. Moreover, from the depth information, the system can acquire respiration rate by directly measuring the motion of the chest wall during breathing. We also conducted a pilot human study using this system with 29 participants of different demographics such as age, gender, and skin color. Our study shows that with depth-based motion compensation, the success rate (system measurement within 10% of reference) of HR measurements increases to 75%, as compared to 35% when motion compensation is not used. The mean HR deviation from the reference also drops from 21 BPM to −6.25 BPM when we apply the depth-based motion compensation. In terms of the RR measurement, our system shows a mean deviation of 1.7 BPM from the reference measurement. The pilot human study shows the system performance is independent of skin color but weakly dependent on gender and age.
Collapse
|