1
|
Chen H, Ding X, Zhang W, Dong X. Coal mining environment causes adverse effects on workers. Front Public Health 2024; 12:1368557. [PMID: 38741904 PMCID: PMC11090038 DOI: 10.3389/fpubh.2024.1368557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Background The objective of this study is to study the adverse effects of coal mining environment on workers to discover early effective biomarkers. Methods The molecular epidemiological study was conducted with 502 in-service workers, who were divided into miner and auxiliary. We measured the individual levels of dust exposure for participants. Clinical examinations were conducted by qualified doctors. Peripheral blood was collected to measure biochemistry, hemogram, and karyocyte apoptosis. Results All workers were healthy who have not found with any diseases that can be diagnosed medically in the physical examination and showed no difference in dust exposure level, age, height, weight, and body mass index between groups. The working years of miners were lower than that of auxiliaries (p < 0.001). Compared with auxiliaries, the concentration and percentage of lymphocytes (p = 0.040, p = 0.012), basophils (p = 0.027, p = 0.034), and red blood cells (p < 0.001) and the concentration of hemoglobin of miners were lower (p < 0.001). The percentage of neutrophils (p = 0.003), the concentration of mean corpuscular hemoglobin concentration (p = 0.002), and the proportion of karyocyte apoptosis in miners were higher (p < 0.001). Miners presented higher blood urea nitrogen (p < 0.001), ratio of blood urea nitrogen to creatinine (p < 0.001), the high density lipoprotein cholesterol (p < 0.001), lower creatinine (p < 0.05), and cholesterol (p < 0.001). Conclusion The coal mining environment impacted mining workers' immune function, renal function, and the hematopoietic system, including BUN/CRE, HGB, RBC, and LYMPH, which could be used as early biomarkers to screen the health of coal miners.
Collapse
Affiliation(s)
- Huihui Chen
- Wannan Medical College, Wuhu, Anhui, China
- Guang’anmen Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinping Ding
- Huaibei Occupational Disease Prevention and Control Institute, Huaibei, Anhui, China
| | | | - Xichen Dong
- Guang’anmen Hospital China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Rytz CL, Pun M, Mawhinney JA, Mounsey CA, Mura M, Martin A, Pialoux V, Hartmann SE, Furian M, Rawling JM, Lopez I, Soza D, Moraga FA, Lichtblau M, Bader PR, Ulrich S, Bloch KE, Frise MC, Poulin MJ. Differential Effects of High-Altitude Exposure on Markers of Oxidative Stress, Antioxidant Capacity and Iron Profiles. Am J Physiol Regul Integr Comp Physiol 2022; 323:R445-R456. [PMID: 35938686 DOI: 10.1152/ajpregu.00321.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
High altitude (HA) exposure may stimulate significant physiological and molecular changes, resulting in HA-related illnesses. HA may impact oxidative stress, antioxidant capacity and iron homeostasis, yet it is unclear how both repeated exposure and HA acclimatization may modulate such effects. Therefore, we assessed the effects of weeklong repeated daily HA exposure (2,900m to 5,050m) in altitude-naïve individuals (n=21, 13 females, mean ± SD, 25.3 ± 3.7 years) to mirror the working schedule of HA workers (n=19, all males, 40.1 ± 2.1 years) at the Atacama Large Millimeter Array (ALMA) Observatory (San Pedro de Atacama, Chile). Markers of oxidative stress, antioxidant capacity and iron homeostasis were measured in blood plasma. Levels of protein oxidation (p<0.001) and catalase activity (p=0.023) increased and serum iron (p<0.001), serum ferritin (p<0.001) and transferrin saturation (p<0.001) levels decreased with HA exposure in both groups. HA workers had lower levels of oxidative stress, and higher levels of antioxidant capacity, iron supply and hemoglobin concentration as compared to altitude-naïve individuals. Upon a second week of daily HA exposure, changes in levels of protein oxidation, glutathione peroxidase and nitric oxide metabolites were lower as compared to the first week in altitude-naïve individuals. These results indicate that repeated exposure to HA may significantly alter oxidative stress and iron homeostasis, and the degree of such changes may be dependent on if HA is visited naïvely or routinely. Further studies are required to fully elucidate differences in HA-induced changes in oxidative stress and iron homeostasis profiles amongst visitors of HA.
Collapse
Affiliation(s)
- Chantal L Rytz
- Libin Cardiovascular Institute, Calgary, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Matiram Pun
- Cumming School of Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jamie A Mawhinney
- Department of Plastic Surgery, Queen Alexandra Hospital, Portsmouth University Hospital NHS Foundation Trust, UK
| | | | - Mathilde Mura
- Univ Lyon, University Lyon 1, Team "Atherosclerosis, Thrombosis and Physical Activity", Lyon, France
| | - Agnès Martin
- Univ Lyon, University Lyon 1, Team "Atherosclerosis, Thrombosis and Physical Activity", Lyon, France
| | - Vincent Pialoux
- Univ Lyon, University Lyon 1, Team "Atherosclerosis, Thrombosis and Physical Activity", Lyon, France
| | - Sara E Hartmann
- Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Michael Furian
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Jean M Rawling
- Department of Family Medicine at the University of Calgary, Calgary, Canada
| | - Ivan Lopez
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Daniel Soza
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Fernando A Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Mona Lichtblau
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Patrick R Bader
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Ulrich
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Konrad E Bloch
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Matthew C Frise
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Intensive Care Unit, Royal Berkshire Hospitals NHS Foundation Trust, Reading, UK
| | - Marc J Poulin
- Libin Cardiovascular Institute, Calgary, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Pulmonary Capacity, Blood Composition and Metabolism among Coal Mine Workers in High- and Low-Altitude Aboveground and Underground Workplaces. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148295. [PMID: 35886146 PMCID: PMC9318192 DOI: 10.3390/ijerph19148295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
(1) Background: While previous studies revealed how underground mining might adversely affect the cardiopulmonary functions of workers, this study further investigated the differences between under- and aboveground mining at both high and low altitudes, which has received little attention in the literature. (2) Methods: Seventy-one healthy male coal mine workers were recruited, who had worked at least 5 years at the mining sites located above the ground at high (>3900 m; n = 19) and low (<120 m; n = 16) altitudes as well as under the ground at high (n = 20) and low (n = 16) altitudes. Participants’ heart rates, pulmonary functions, total energy expenditure and metabolism were measured over a 5-consecutive-day session at health clinics. (3) Results: Combining the results for both above- and underground locations, workers at high-altitude mining sites had significantly higher peak heart rate (HR), minimum average HR and training impulse as well as energy expenditure due to all substances and due to fat than those at low-altitude sites. They also had significantly higher uric acid, total cholesterol, creatine kinase and N-osteocalcin in their blood samples than the workers at low-altitude mining sites. At underground worksites, the participants working at high-altitude had a significantly higher average respiratory rate than those at low-altitude regions. (4) Conclusion: In addition to underground mining, attention should be paid to high-altitude mining as working under a hypoxia condition at such altitude likely presents physiological challenges.
Collapse
|
4
|
Calderon-Jofre R, Moraga D, Moraga FA. The Effect of Chronic Intermittent Hypobaric Hypoxia on Sleep Quality and Melatonin Serum Levels in Chilean Miners. Front Physiol 2022; 12:809360. [PMID: 35222064 PMCID: PMC8864145 DOI: 10.3389/fphys.2021.809360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
High-altitude mining is an important economic resource for Chile. These workers are exposed to chronic intermittent hypobaric hypoxia (CIHH), which reduces their sleep quality and increases the risk of accidents and long-term illnesses. Melatonin, a hormone produced by the pineal gland, is a sleep inducer that regulates the circadian cycle and may be altered in populations subjected to CIHH. This work aimed to assess the relationship between altitude, sleep quality, and plasma melatonin concentrations in miners with CIHH exposure. 288 volunteers were recruited from five altitudes (0, 1,600, 2,500, 3,500, and 4,500 m). All volunteers worked for 7 days at altitude, followed by 7 days of rest at sea level. We performed anthropometric assessments, nocturnal oximetry, sleep quality and sleepiness surveys, and serum melatonin levels upon awakening. Although oxygen saturation progressively decreased and heart rate increased at higher altitudes, subjective perception of sleep quality was not significantly different, and sleepiness increased in all groups compared to population at sea level. Similarly, melatonin levels increased at all assessed altitudes compared to the population at sea level. These data confirm that sleep disturbances associated with CIHH increase morning melatonin levels. Therefore, this hormone and could potentially serve as a biomarker of sleep quality.
Collapse
Affiliation(s)
- Rodrigo Calderon-Jofre
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Daniel Moraga
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
| | - Fernando A. Moraga
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
- *Correspondence: Fernando A. Moraga,
| |
Collapse
|