1
|
Forbes LM, Cendali FI, Nemkov T, Bull TM, D’Alessandro A, Rawlinson KE, Roach RC, Subudhi AW, Lahm T, Cornwell WK. Red Blood Cell Metabolic Responses during Acute Hypoxic Exercise in Healthy Adults. Am J Respir Cell Mol Biol 2025; 72:456-459. [PMID: 40167309 PMCID: PMC12005005 DOI: 10.1165/rcmb.2024-0178le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Affiliation(s)
| | | | - Travis Nemkov
- University of Colorado Anschutz Medical CampusAurora, Colorado
| | - Todd M. Bull
- University of Colorado Anschutz Medical CampusAurora, Colorado
| | | | | | - Robert C. Roach
- University of Colorado Anschutz Medical CampusAurora, Colorado
| | | | - Tim Lahm
- University of Colorado Anschutz Medical CampusAurora, Colorado
- National Jewish HealthDenver, Colorado
- Rocky Mountain Regional Veterans Affairs Medical CenterAurora, Colorado
| | | |
Collapse
|
2
|
Kassa T, Jana S, Baek JH, Alayash AI. Impact of cold storage on the oxygenation and oxidation reactions of red blood cells. Front Physiol 2024; 15:1427094. [PMID: 39224206 PMCID: PMC11366621 DOI: 10.3389/fphys.2024.1427094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction: Electrostatic binding of deoxyhemoglobin (Hb) to cytoplasmic domain of band 3 anion transport protein occurs as part of the glycolytic regulation in red blood cells (RBCs). Hb oxidation intermediates not only impact RBC's oxygenation but also RBC's membrane through the interaction with band 3. It is not known however whether these critical pathways undergo changes during the storage of RBCs. Methods and Results: Oxygen parameters of fresh blood showed a sigmoidal and cooperative oxygen dissociation curve (ODC) for the first week of storage. This was followed by a large drop in oxygen affinity (P50) (from 30 to 20 mmHg) which remained nearly unchanged with a slight elevation in Bohr coefficients and a significant drop in extracellular acidification rates (ECAR) at the 42-day storage. Oxidation of Hb increased with time as well as the formation of a highly reactive ferryl Hb under oxidative stress conditions. Ferryl Hb interacted avidly with RBC's membrane's band 3, but to lesser extent with old ghost RBCs. Discussion: The observed alterations in RBC's oxygen binding may have been affected by the alterations in band 3's integrity which are largely driven by the internal iron oxidation of Hb. Restoring oxygen homeostasis in stored blood may require therapeutic interventions that target changes in Hb oxidation and membrane changes.
Collapse
Affiliation(s)
| | | | | | - Abdu I. Alayash
- Laboratory of Biochemistry and Vascular Physiology, Division of Blood Component and Devices, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
3
|
Ni J, Zhao J, Chen H, Liu W, Le M, Guo X, Dong X. 2,3-Diphosphoglyceric Acid Alleviating Hypoxic-Ischemic Brain Damage through p38 MAPK Modulation. Int J Mol Sci 2024; 25:8877. [PMID: 39201562 PMCID: PMC11354455 DOI: 10.3390/ijms25168877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition characterized by significant brain damage due to insufficient blood flow and oxygen delivery at birth, leading to high rates of neonatal mortality and long-term neurological deficits worldwide. 2,3-Diphosphoglyceric acid (2,3-DPG), a small molecule metabolite prevalent in erythrocytes, plays an important role in regulating oxygen delivery, but its potential neuroprotective role in hypoxic-ischemic brain damage (HIBD) has yet to be fully elucidated. Our research reveals that the administration of 2,3-DPG effectively reduces neuron damage caused by hypoxia-ischemia (HI) both in vitro and in vivo. We observed a notable decrease in HI-induced neuronal cell apoptosis, attributed to the downregulation of Bax and cleaved-caspase 3, alongside an upregulation of Bcl-2 expression. Furthermore, 2,3-DPG significantly alleviates oxidative stress and mitochondrial damage induced by oxygen-glucose deprivation/reperfusion (OGD/R). The administration of 2,3-DPG in rats subjected to HIBD resulted in a marked reduction in brain edema and infarct volume, achieved through the suppression of neuronal apoptosis and neuroinflammation. Using RNA-seq analysis, we validated that 2,3-DPG offers protection against neuronal apoptosis under HI conditions by modulating the p38 MAPK pathway. These insights indicated that 2,3-DPG might act as a promising novel therapeutic candidate for HIE.
Collapse
Affiliation(s)
| | | | | | | | | | - Xirong Guo
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (J.N.); (J.Z.); (H.C.); (W.L.); (M.L.)
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (J.N.); (J.Z.); (H.C.); (W.L.); (M.L.)
| |
Collapse
|
4
|
Kjeld T, Krag TO, Brenøe A, Møller AM, Arendrup HC, Højberg J, Fuglø D, Hancke S, Tolbod LP, Gormsen LC, Vissing J, Hansen EG. Hemoglobin concentration and blood shift during dry static apnea in elite breath hold divers. Front Physiol 2024; 15:1305171. [PMID: 38745836 PMCID: PMC11092981 DOI: 10.3389/fphys.2024.1305171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/23/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Elite breath-hold divers (BHD) enduring apneas of more than 5 min are characterized by tolerance to arterial blood oxygen levels of 4.3 kPa and low oxygen-consumption in their hearts and skeletal muscles, similar to adult seals. Adult seals possess an adaptive higher hemoglobin-concentration and Bohr effect than pups, and when sedated, adult seals demonstrate a blood shift from the spleen towards the brain, lungs, and heart during apnea. We hypothesized these observations to be similar in human BHD. Therefore, we measured hemoglobin- and 2,3-biphosphoglycerate-concentrations in BHD (n = 11) and matched controls (n = 11) at rest, while myocardial mass, spleen and lower extremity volumes were assessed at rest and during apnea in BHD. Methods and results After 4 min of apnea, left ventricular myocardial mass (LVMM) determined by 15O-H2O-PET/CT (n = 6) and cardiac MRI (n = 6), was unaltered compared to rest. During maximum apnea (∼6 min), lower extremity volume assessed by DXA-scan revealed a ∼268 mL decrease, and spleen volume, assessed by ultrasonography, decreased ∼102 mL. Compared to age, BMI and VO2max matched controls (n = 11), BHD had similar spleen sizes and 2,3- biphosphoglycerate-concentrations, but higher total hemoglobin-concentrations. Conclusion Our results indicate: 1) Apnea training in BHD may increase hemoglobin concentration as an oxygen conserving adaptation similar to adult diving mammals. 2) The blood shift during dry apnea in BHD is 162% more from the lower extremities than from the spleen. 3) In contrast to the previous theory of the blood shift demonstrated in sedated adult seals, blood shift is not towards the heart during dry apnea in humans.
Collapse
Affiliation(s)
- Thomas Kjeld
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas O. Krag
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Brenøe
- Department of Clinical Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ann Merete Møller
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens Højberg
- Department of Cardiothoracic Anesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dan Fuglø
- Department of Nuclear Medicine, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Søren Hancke
- Department of Clinical Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lars Poulsen Tolbod
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Egon Godthaab Hansen
- Department of Anesthesiology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Hodun K, Czuba M, Płoszczyca K, Sadowski J, Langfort J, Chabowski A, Baranowski M. The effect of normobaric hypoxia on acute exercise-induced changes in blood sphingoid base-1-phosphates metabolism in cyclists. Biol Sport 2024; 41:37-45. [PMID: 38524828 PMCID: PMC10955731 DOI: 10.5114/biolsport.2024.131414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 03/26/2024] Open
Abstract
Extracellular sphingosine-1-phosphate (S1P) emerged as an important regulator of muscle function. We previously found that plasma S1P concentration is elevated in response to acute exercise and training. Interestingly, hypoxia, which is commonly utilized in training programs, induces a similar effect. Therefore, the aim of the current study was to determine the effect of normobaric hypoxia on exercise-induced changes in blood sphingolipid metabolism. Fifteen male competitive cyclists performed a graded cycling exercise until exhaustion (GE) and a simulated 30 km individual time trial (TT) in either normoxic or hypoxic (FiO2 = 16.5%) conditions. Blood samples were taken before the exercise, following its cessation, and after 30 min of recovery. We found that TT increased dihydrosphingosine-1-phosphate (dhS1P) concentration in plasma (both HDL- and albumin-bound) and blood cells, as well as the rate of dhS1P release from erythrocytes, regardless of oxygen availability. Plasma concentration of S1P was, however, reduced during the recovery phase, and this trend was augmented by hypoxia. On the other hand, GE in normoxia induced a selective increase in HDL-bound S1P. This effect disappeared when the exercise was performed in hypoxia, and it was associated with reduced S1P level in platelets and erythrocytes. We conclude that submaximal exercise elevates total plasma dhS1P concentration via increased availability of dihydrosphingosine resulting in enhanced dhS1P synthesis and release by blood cells. Maximal exercise, on the other hand, induces a selective increase in HDL-bound S1P, which is a consequence of mechanisms not related to blood cells. We also conclude that hypoxia reduces post-exercise plasma S1P concentration.
Collapse
Affiliation(s)
- Katarzyna Hodun
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Miłosz Czuba
- Faculty of Rehabilitation, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Kamila Płoszczyca
- Department of Kinesiology, Institute of Sport – National Research Institute, Warsaw, Poland
| | - Jerzy Sadowski
- Faculty of Physical Education and Health, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Józef Langfort
- Department of Sports Theory, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
6
|
Suhail M. Biophysical chemistry behind sickle cell anemia and the mechanism of voxelotor action. Sci Rep 2024; 14:1861. [PMID: 38253605 PMCID: PMC10803371 DOI: 10.1038/s41598-024-52476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
Sickle cell anemia disease has been a great challenge to the world in the present situation. It occurs only due to the polymerization of sickle hemoglobin (HbS) having Pro-Val-Glu typed mutation, while the polymerization does not occur in normal hemoglobin (HbA) having Pro-Glu-Glu peptides. It is also well confirmed that the oxygenated HbS (OHbS) does not participate in the polymerization, while the deoxygenated HbS (dHbS) does, which causes the shape of red blood cells sickled. After polymerization, the blood has a low oxygen affinity. Keeping this fact into consideration, only those drugs are being synthesized that stabilize the OHbS structure so that the polymerization of HbS can be stopped. The literature data showed no systematic description of the changes occurring during the OHbS conversion to dHbS before polymerization. Hence, an innovative reasonable study between HbA and HbS, when they convert into their deoxygenated forms, was done computationally. In this evaluation, physiochemical parameters in HbA/HbS before and after deoxygenation were studied and compared deeply. The computationally collected data was used to understand the abnormal behaviour of dHbS arising due to the replacement of Glu6 with Val6. Consequently, during the presented computational study, the changes occurring in HbS were found opposite/abnormal as compared to HbA after the deoxygenation of both. The mechanism of Voxelotor (GBT-440) action to stop the HbS polymerization was also explained with the help of computationally collected data. Besides, a comparative study between GBT-440 and another suggested drug was also done to know their antisickling strength. Additionally, the effect of pH, CO, CO2, and 2,3-diphosphoglycerate (2,3-DPG) on HbS structure was also studied computationally.
Collapse
Affiliation(s)
- Mohd Suhail
- Department of Chemistry, Siddhartha (PG) College, Aakhlor Kheri, Deoband (Saharanpur), Uttar Pradesh, 247554, India.
| |
Collapse
|
7
|
Gajda R, Gajda J, Czuba M, Knechtle B, Drygas W. Sports Heart Monitors as Reliable Diagnostic Tools for Training Control and Detecting Arrhythmias in Professional and Leisure-Time Endurance Athletes: An Expert Consensus Statement. Sports Med 2024; 54:1-21. [PMID: 37906426 PMCID: PMC10799155 DOI: 10.1007/s40279-023-01948-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
There are countless types of portable heart rate monitoring medical devices used variously by leisure-time exercisers, professional athletes, and chronically ill patients. Almost all the currently used heart rate monitors are capable of detecting arrhythmias, but this feature is not widely known or used among their millions of consumers. The aims of this paper were as follows: (1) to analyze the currently available sports heart rate monitors and assess their advantages and disadvantage in terms of heart rate and rhythm monitoring in endurance athletes; (2) to discuss what types of currently available commercial heart rate monitors are most convenient/adjustable to the needs of different consumers (including occasionally physically active adults and cardiac patients), bearing in mind the potential health risks, especially heart rhythm disturbances connected with endurance training; (3) to suggest a set of "optimal" design features for next-generation smart wearable devices based on the consensus opinion of an expert panel of athletes, coaches, and sports medicine doctors. Ninety-two experts aged 20 years and over, involved in endurance sports on a daily basis, were invited to participate in consensus-building discussions, including 56 long-distance runners, 18 cyclists, nine coaches, and nine physicians (sports medicine specialists, cardiologists, and family medicine doctors). The overall consensus endorsed by these experts indicates that the "optimal" sports heart rate monitor should be a one-piece device of the smartwatch type (with two or more electrodes), with integrated smartphone features, and able to collect and continually transmit data without exhibiting artifacts. It should continuously record at least a single-lead electrocardiography, send an alert after an unexpected fall, be of reasonable weight, come at an affordable price, and be user friendly.
Collapse
Affiliation(s)
- Robert Gajda
- Center for Sports Cardiology at the Gajda-Med Medical Center in Pułtusk, 06-100, Pułtusk, Poland.
- Department of Kinesiology and Health Prevention, Jan Dlugosz University, Czestochowa, Poland.
| | - Jacek Gajda
- Center for Sports Cardiology at the Gajda-Med Medical Center in Pułtusk, 06-100, Pułtusk, Poland
| | - Miłosz Czuba
- Faculty of Rehabilitation, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
- Medbase St. Gallen am Vadianplatz, St. Gallen, Switzerland
| | - Wojciech Drygas
- Department of Epidemiology, Cardiovascular Disease Prevention, and Health Promotion, The Cardinal Stefan Wyszynski National Institute of Cardiology, Warsaw, Poland
- Lazarski University, Warsaw, Poland
| |
Collapse
|
8
|
Gajda R, Drygas W, Gajda J, Kiper P, Knechtle B, Kwaśniewska M, Sterliński M, Biernacka EK. Exercise-Induced Arrhythmia or Munchausen Syndrome in a Marathon Runner? Diagnostics (Basel) 2023; 13:2917. [PMID: 37761288 PMCID: PMC11340689 DOI: 10.3390/diagnostics13182917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
A 36-year-old professional marathon runner reported sudden irregular palpitations occurring during competitions, with heart rates (HR) up to 230 bpm recorded on a sports HR monitor (HRM) over 4 years. These episodes subsided upon the cessation of exercise. Electrocardiograms, echocardiography, and cardiac magnetic resonance imaging results were borderline for athlete's heart. Because an electrophysiology study and standard exercise tests provoked no arrhythmia, doctors suspected Munchausen syndrome. Ultimately, an exercise test that simulated the physical effort of a competition provoked tachyarrhythmia consistent with the HRM readings. This case demonstrates the diagnostic difficulties related to exercise-induced arrhythmia and the diagnostic usefulness of sports HRMs.
Collapse
Affiliation(s)
- Robert Gajda
- Center for Sports Cardiology at the Gajda-Med Medical Center in Pułtusk, ul. Piotra Skargi 23/29, 06-100 Pułtusk, Poland;
- Department of Kinesiology and Health Prevention, Jan Dlugosz University, 42-200 Czestochowa, Poland
| | - Wojciech Drygas
- Faculty of Medicine, Lazarski University, ul. Swieradowska 43, 02-662 Warsaw, Poland;
- National Institute of Cardiology, ul. Alpejska 42, 04-628 Warszawa, Poland; (M.S.); (E.K.B.)
| | - Jacek Gajda
- Center for Sports Cardiology at the Gajda-Med Medical Center in Pułtusk, ul. Piotra Skargi 23/29, 06-100 Pułtusk, Poland;
| | - Pawel Kiper
- Healthcare Innovation Technology Lab, IRCCS San Camillo Hospital, Via Alberoni 70, 30126 Venice, Italy;
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland;
- Medbase St. Gallen Am Vadianplatz, 9000 St. Gallen, Switzerland
| | - Magdalena Kwaśniewska
- Department of Preventive Medicine, Faculty of Health Sciences, Medical University of Lodz, ul. Lucjana Żeligowskiego 7/9, 90-752 Łódź, Poland;
| | - Maciej Sterliński
- National Institute of Cardiology, ul. Alpejska 42, 04-628 Warszawa, Poland; (M.S.); (E.K.B.)
| | | |
Collapse
|
9
|
Carin R, Deglicourt G, Rezigue H, Martin M, Nougier C, Boisson C, Dargaud Y, Joly P, Renoux C, Connes P, Stauffer E, Nader E. Effects of a Maximal Exercise Followed by a Submaximal Exercise Performed in Normobaric Hypoxia (2500 m), on Blood Rheology, Red Blood Cell Senescence, and Coagulation in Well-Trained Cyclists. Metabolites 2023; 13:metabo13020179. [PMID: 36837797 PMCID: PMC9964623 DOI: 10.3390/metabo13020179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Acute normoxic exercise impacts the rheological properties of red blood cells (RBC) and their senescence state; however, there is a lack of data on the effects of exercise performed in hypoxia on RBC properties. This crossover study compared the effects of acute hypoxia vs. normoxia on blood rheology, RBC senescence, and coagulation during exercise. Nine trained male cyclists completed both a session in normoxia (FiO2 = 21%) and hypoxia (FiO2 = 15.3% ≈ 2500 m). The two sessions were randomly performed, separated by one week, and consisted of an incremental and maximal exercise followed by a 20 min exercise at the first ventilatory threshold (VT1) on a home-trainer. Blood samples were taken before and after exercise to analyze hematological parameters, blood rheology (hematocrit, blood viscosity, RBC deformability and aggregation), RBC senescence markers (phosphatidylserine (PS) and CD47 exposure, intraerythrocyte reactive oxygen species (ROS), and calcium content), and blood clot viscoelastic properties. Hemoglobin oxygen saturation (SpO2) and blood lactate were also measured. In both conditions, exercise induced an increase in blood viscosity, hematocrit, intraerythrocyte calcium and ROS content, and blood lactate concentration. We also observed an increase in blood clot amplitude, and a significant drop in SpO2 during exercise in the two conditions. RBC aggregation and CD47 exposure were not modified. Exercise in hypoxia induced a slight decrease in RBC deformability which could be related to the slight increase in mean corpuscular hemoglobin concentration (MCHC). However, the values of RBC deformability and MCHC after the exercise performed in hypoxia remained in the normal range of values. In conclusion, acute hypoxia does not amplify the RBC and coagulation changes induced by an exercise bout.
Collapse
Affiliation(s)
- Romain Carin
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Universié Claude Bernard Lyon 1, Université de Lyon, 69007 Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France
| | - Gabriel Deglicourt
- Exploration Fonctionnelle Respiratoire, Médecine du Sport et de l’activité Physique, Hospices Civils de Lyon, Hôpital de la Croix Rousse, 69004 Lyon, France
| | - Hamdi Rezigue
- Service d’hématologie-hémostase, Hospices Civils de Lyon, 69002 Bron, France
| | - Marie Martin
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Universié Claude Bernard Lyon 1, Université de Lyon, 69007 Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France
| | - Christophe Nougier
- Service d’hématologie-hémostase, Hospices Civils de Lyon, 69002 Bron, France
- EA 4609-Hémostase et Thrombose, SFR Lyon Est, Université Claude Bernard Lyon I, 69100 Lyon, France
| | - Camille Boisson
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Universié Claude Bernard Lyon 1, Université de Lyon, 69007 Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France
| | - Yesim Dargaud
- Service d’hématologie-hémostase, Hospices Civils de Lyon, 69002 Bron, France
- EA 4609-Hémostase et Thrombose, SFR Lyon Est, Université Claude Bernard Lyon I, 69100 Lyon, France
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Universié Claude Bernard Lyon 1, Université de Lyon, 69007 Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France
- Service de Biochimie et de Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69002 Bron, France
| | - Céline Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Universié Claude Bernard Lyon 1, Université de Lyon, 69007 Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France
- Service de Biochimie et de Biologie Moléculaire, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69002 Bron, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Universié Claude Bernard Lyon 1, Université de Lyon, 69007 Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Universié Claude Bernard Lyon 1, Université de Lyon, 69007 Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France
- Exploration Fonctionnelle Respiratoire, Médecine du Sport et de l’activité Physique, Hospices Civils de Lyon, Hôpital de la Croix Rousse, 69004 Lyon, France
| | - Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Universié Claude Bernard Lyon 1, Université de Lyon, 69007 Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, 79015 Paris, France
- Correspondence:
| |
Collapse
|
10
|
Herance JR, Ciudin A, Lamas-Domingo R, Aparicio-Gómez C, Hernández C, Simó R, Palomino-Schätzlein M. The Footprint of Type 1 Diabetes on Red Blood Cells: A Metabolomic and Lipidomic Study. J Clin Med 2023; 12:jcm12020556. [PMID: 36675484 PMCID: PMC9862852 DOI: 10.3390/jcm12020556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
The prevalence of diabetes type 1 (T1D) in the world populations is continuously growing. Although treatment methods are improving, the diagnostic is still symptom-based and sometimes far after onset of the disease. In this context, the aim of the study was the search of new biomarkers of the disease in red blood cells (RBCs), until now unexplored. The metabolomic and the lipidomic profile of RBCs from T1D patients and matched healthy controls was determined by NMR spectroscopy, and different multivariate discrimination models were built to select the metabolites and lipids that change most significantly. Relevant metabolites were further confirmed by univariate statistical analysis. Robust separation in the metabolomic and lipidomic profiles of RBCs from patients and controls was confirmed by orthogonal projection on latent structure discriminant analysis (OPLS-DA), random forest analysis, and significance analysis of metabolites (SAM). The main changes were detected in the levels of amino acids, organic acids, creatine and phosphocreatine, lipid change length, and choline derivatives, demonstrating changes in glycolysis, BCAA metabolism, and phospholipid metabolism. Our study proves that robust differences exist in the metabolic and lipidomic profile of RBCs from T1D patients, in comparison with matched healthy individuals. Some changes were similar to alterations found already in RBCs of T2D patients, but others seemed to be specific for type 1 diabetes. Thus, many of the metabolic differences found could be biomarker candidates for an earlier diagnosis or monitoring of patients with T1D.
Collapse
Affiliation(s)
- José Raul Herance
- Medical Molecular Imaging Research Group, Vall d’Hebron Research Institute and Autonomous University of Barcelona, 08035 Barcelona, Spain
- CIBER-bbn (ISCIII), 28040 Madrid, Spain
- Correspondence: (J.R.H.); (M.P.-S.); Tel.: +34-9-3489-3000 (ext. 4946) (J.R.H.); +34-9-6202-1811 (M.P.-S.)
| | - Andreea Ciudin
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Autonomous University of Barcelona, 08035 Barcelona, Spain
- CIBERDEM (ISCIII), 28040 Madrid, Spain
| | - Rubén Lamas-Domingo
- NMR Facility, Centro de Investigación Príncipe Felipe, 46013 Valencia, Spain
| | - Carolina Aparicio-Gómez
- Medical Molecular Imaging Research Group, Vall d’Hebron Research Institute and Autonomous University of Barcelona, 08035 Barcelona, Spain
- CIBER-bbn (ISCIII), 28040 Madrid, Spain
| | - Cristina Hernández
- CIBER-bbn (ISCIII), 28040 Madrid, Spain
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Autonomous University of Barcelona, 08035 Barcelona, Spain
| | - Rafael Simó
- CIBER-bbn (ISCIII), 28040 Madrid, Spain
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Autonomous University of Barcelona, 08035 Barcelona, Spain
| | - Martina Palomino-Schätzlein
- NMR Facility, Centro de Investigación Príncipe Felipe, 46013 Valencia, Spain
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, 46980 Valencia, Spain
- Correspondence: (J.R.H.); (M.P.-S.); Tel.: +34-9-3489-3000 (ext. 4946) (J.R.H.); +34-9-6202-1811 (M.P.-S.)
| |
Collapse
|
11
|
Mohanto N, Park YJ, Jee JP. Current perspectives of artificial oxygen carriers as red blood cell substitutes: a review of old to cutting-edge technologies using in vitro and in vivo assessments. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:153-190. [PMID: 35935469 PMCID: PMC9344254 DOI: 10.1007/s40005-022-00590-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/02/2022] [Indexed: 01/06/2023]
Abstract
Background Several circumstances such as accidents, surgery, traumatic hemorrhagic shock, and other causalities cause major blood loss. Allogenic blood transfusion can be resuscitative for such conditions; however, it has numerous ambivalent effects, including supply shortage, needs for more time, cost for blood grouping, the possibility of spreading an infection, and short shelf-life. Hypoxia or ischemia causes heart failure, neurological problems, and organ damage in many patients. To address this emergent medical need for resuscitation and to treat hypoxic conditions as well as to enhance oxygen transportation, researchers aspire to achieve a robust technology aimed to develop safe and feasible red blood cell substitutes for effective oxygen transport. Area covered This review article provides an overview of the formulation, storage, shelf-life, clinical application, side effects, and current perspectives of artificial oxygen carriers (AOCs) as red blood cell substitutes. Moreover, the pre-clinical (in vitro and in vivo) assessments for the evaluation of the efficacy and safety of oxygen transport through AOCs are key considerations in this study. With the most significant technologies, hemoglobin- and perfluorocarbon-based oxygen carriers as well as other modern technologies, such as synthetically produced porphyrin-based AOCs and oxygen-carrying micro/nanobubbles, have also been elucidated. Expert opinion Both hemoglobin- and perfluorocarbon-based oxygen carriers are significant, despite having the latter acting as safeguards; they are cost-effective, facile formulations which penetrate small blood vessels and remove arterial blockages due to their nano-size. They also show better biocompatibility and longer half-life circulation than other similar technologies.
Collapse
Affiliation(s)
- Nijaya Mohanto
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452 Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
12
|
Dotsenko OI. The whole-cell kinetic metabolic model of the pH regulation mechanisms in human erythrocytes. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mathematical modeling in recent years helped to obtain answers to questions that were difficult or even impossible to answer experimentally, to predict several unexpected connections in cell metabolism and to understand and importance of certain biochemical reactions. Due to the complexity and variety of processes underlying the mechanisms of intracellular pH (pHi) regulation, mathematical modeling and metabolome analysis are powerful tools for their analysis. In this regard, a mathematical metabolic model for human erythrocytes was created, which combines cellular metabolism with acid-base processes and gas exchange. The model consists of the main metabolic pathways, such as glycolysis, the pentose phosphate pathway, some membrane transport systems, and interactions between hemoglobin and metabolites. The Jacobs-Stewart cycle, which is fundamental in gas exchange and pH regulation, was included to these pathways. The model was created in the COPASI environment, consisted of 85 reactions, the rate of which is based on accurate kinetic equations. The time dependences of reaction flows and metabolite concentrations, as an outcome of calculations, allowed us to reproduce the behaviour of the metabolic system after its disturbance in vitro and to establish the recovery mechanisms or approximation to stationary states. The COPASI simulation environment provides model flexibility by reproducing any experimental design by optimizing direct quantitative comparisons between measured and predicted results. Thus, the procedure of parameters optimization (Parameter Estimation) followed by the solution of the model’s differential equations (Time Course procedure) was used to predict the behaviour of all measured and unmeasured variables over time. The initial intracellular concentrations of CO2, HCO3– in human erythrocytes used for incubation in a phosphate buffer medium were calculated. Changes in CO2, HCO3– content over time were shown. It was established that the regulation of pH in erythrocytes placed in a buffer medium takes place with the participation of two types of processes – fast (takes place in 1.3 s) and slow. It is shown that fast processes are aimed at restoring the intracellular balance between CO2 and HCO3–, slow processes are aimed at establishing the balance of H+ between the cell and the extracellular environment. The role of carbonic anhydrase (CA) and hemoglobin in the processes of pH stabilization is shown and analyzed. The physiological role of the metabolon between band 3 protein (AE1), CA, aquaporin and hemoglobin in maintaining pH homeostasis in the conditions of in vitro experiments are discussed.
Collapse
|
13
|
Acute Exercise with Moderate Hypoxia Reduces Arterial Oxygen Saturation and Cerebral Oxygenation without Affecting Hemodynamics in Physically Active Males. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084558. [PMID: 35457425 PMCID: PMC9027900 DOI: 10.3390/ijerph19084558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 01/02/2023]
Abstract
Hemodynamic changes during exercise in acute hypoxia (AH) have not been completely elucidated. The present study aimed to investigate hemodynamics during an acute bout of mild, dynamic exercise during moderate normobaric AH. Twenty-two physically active, healthy males (average age; range 23–40 years) completed a cardiopulmonary test on a cycle ergometer to determine their maximum workload (Wmax). On separate days, participants performed two randomly assigned exercise tests (three minutes pedaling at 30% of Wmax): (1) during normoxia (NORMO), and (2) during normobaric AH at 13.5% inspired oxygen (HYPO). Hemodynamics were assessed with impedance cardiography, and peripheral arterial oxygen saturation (SatO2) and cerebral oxygenation (Cox) were measured by near-infrared spectroscopy. Hemodynamic responses (heart rate, stroke volume, cardiac output, mean arterial blood pressure, ventricular emptying rate, and ventricular filling rate) were not any different between NORMO and HYPO. However, the HYPO test significantly reduced both SatO2 (96.6 ± 3.3 vs. 83.0 ± 4.5%) and Cox (71.0 ± 6.6 vs. 62.8 ± 7.4 A.U.) when compared to the NORMO test. We conclude that an acute bout of mild exercise during acute moderate normobaric hypoxia does not induce significant changes in hemodynamics, although it can cause significant reductions in SatO2 and Cox.
Collapse
|
14
|
Płoszczyca K, Chalimoniuk M, Przybylska I, Czuba M. Effects of Short-Term Phosphate Loading on Aerobic Capacity under Acute Hypoxia in Cyclists: A Randomized, Placebo-Controlled, Crossover Study. Nutrients 2022; 14:236. [PMID: 35057416 PMCID: PMC8778537 DOI: 10.3390/nu14020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to evaluate the effects of sodium phosphate (SP) supplementation on aerobic capacity in hypoxia. Twenty-four trained male cyclists received SP (50 mg·kg-1 of FFM/day) or placebo for six days in a randomized, crossover study, with a three-week washout period between supplementation phases. Before and after each supplementation phase, the subjects performed an incremental exercise test to exhaustion in hypoxia (FiO2 = 16%). Additionally, the levels of 2,3-diphosphoglycerate (2,3-DPG), hypoxia-inducible factor 1 alpha (HIF-1α), inorganic phosphate (Pi), calcium (Ca), parathyroid hormone (PTH) and acid-base balance were determined. The results showed that phosphate loading significantly increased the Pi level by 9.0%, whereas 2,3-DPG levels, hemoglobin oxygen affinity, buffering capacity and myocardial efficiency remained unchanged. The aerobic capacity in hypoxia was not improved following SP. Additionally, our data revealed high inter-individual variability in response to SP. Therefore, the participants were grouped as Responders and Non-Responders. In the Responders, a significant increase in aerobic performance in the range of 3-5% was observed. In conclusion, SP supplementation is not an ergogenic aid for aerobic capacity in hypoxia. However, in certain individuals, some benefits can be expected, but mainly in athletes with less training-induced central and/or peripheral adaptation.
Collapse
Affiliation(s)
- Kamila Płoszczyca
- Department of Kinesiology, Institute of Sport, 01-982 Warsaw, Poland
| | - Małgorzata Chalimoniuk
- Department of Physiotherapy, Faculty of Physical Education and Health in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Biala Podlaska, Poland
| | - Iwona Przybylska
- Department of Physiotherapy, Faculty of Physical Education and Health in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Biala Podlaska, Poland
| | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport, 01-982 Warsaw, Poland
- Faculty of Rehabilitation, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland
| |
Collapse
|
15
|
The Effects of Sodium Phosphate Supplementation on the Cardiorespiratory System and Gross Efficiency during Exercise under Hypoxia in Male Cyclists: A Randomized, Placebo-Controlled, Cross-Over Study. Nutrients 2021; 13:nu13103556. [PMID: 34684557 PMCID: PMC8538808 DOI: 10.3390/nu13103556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
The main aim of this study was to evaluate the effects of six days of tri-sodium phosphate (SP) supplementation on the cardiorespiratory system and gross efficiency (GE) during exercise under hypoxia in cyclists. Twenty trained male cyclists received SP (50 mg·kg−1 of fat-free mass/day) or placebo for six days in a randomized, cross-over study, with a three-week washout period between supplementation phases. Before and after each supplementation phase, the subjects performed an incremental exercise test to exhaustion under normobaric hypoxia (FiO2 = 16%, ~2500 m). It was observed that short-term SP supplementation led to a decrease in heart rate, an increase in stroke volume, and an improvement in oxygen pulse (VO2/HR) during low and moderate-intensity exercise under hypoxia. These changes were accompanied by an increase in the serum inorganic phosphate level by 8.7% (p < 0.05). No significant changes were observed in serum calcium levels. GE at a given workload did not change significantly after SP supplementation. These results indicated that SP promotes improvements in the efficiency of the cardiorespiratory system during exercise in a hypoxic environment. Thus, SP supplementation may be beneficial for endurance exercise in hypoxia.
Collapse
|