1
|
Penney CM, Burness G, Zapata G, Lefebvre F, Wilson CC. Transcriptomic responses to within-generation and intergenerational environmental warming in a cold-adapted salmonid. J Exp Biol 2025; 228:jeb249415. [PMID: 40152448 DOI: 10.1242/jeb.249415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Cold-adapted species are particularly threatened by climate change as rates of environmental warming outpace the ability of many populations to adapt. Recent evidence suggests that intergenerational thermal plasticity may play a role in the response of cold-adapted organisms to long-term changes in temperature. Using RNA sequencing, we explored differential gene expression of lake trout (Salvelinus namaycush), a cold-adapted species, to examine the molecular processes that respond to elevated temperature under conditions of within-generation (offspring) and intergenerational (parental) warm acclimation. We hypothesized that genes associated with metabolism, growth and thermal stress/tolerance would be differentially expressed in juvenile lake trout offspring depending on their own acclimation temperature and that of their parents. While parental warm acclimation did have an intergenerational effect on gene expression in their offspring, within-generation (offspring) warm acclimation had a greater effect on the number of differentially expressed genes. Differentially expressed genes enriched pathways for thermal stress, signalling processes, immune function and transcription regulation and depended on the acclimation temperature of the offspring in isolation or in combination with parental warm acclimation. Despite evidence of intergenerational effects on gene expression in lake trout in response to elevated temperatures, the effect is unlikely to significantly increase populations' ability to cope with increasing environmental temperatures associated with climate change.
Collapse
Affiliation(s)
- Chantelle M Penney
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada, K9J 7B8
| | - Gary Burness
- Department of Biology, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Gerardo Zapata
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada, H3A 1A3
| | - François Lefebvre
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada, H3A 1A3
| | - Chris C Wilson
- Aquatic Research and Development Section, Ontario Ministry of Natural Resources, Trent University, Peterborough, ON, Canada, K9L 0G2
| |
Collapse
|
2
|
Zhang S, Lin W, Liang S, Sun G, Yao J, Duan D. Co-Culturing Seaweed with Scallops Can Inhibit the Occurrence of Vibrio by Increasing Dissolved Oxygen and pH. PLANTS (BASEL, SWITZERLAND) 2025; 14:334. [PMID: 39942895 PMCID: PMC11820688 DOI: 10.3390/plants14030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/10/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Seaweeds are critically important for the maintenance of biodiversity in marine aquaculture ecosystems, as they can inhibit the growth of Vibrio. Here, we determined the optimal environmental parameters for co-culturing green macroalgae (Ulva pertusa) and red macroalgae (Gracilariopsis lemaneiformis) with Chinese scallop (Chlamys farreri) by measuring dissolved oxygen (DO), pH, and the strength of Vibrio inhibition under laboratory conditions and validating the effectiveness of this optimal co-culture system from the perspectives of nutrient levels, enzyme activities, and microbial diversity. The results show that co-culturing 30 g of seaweed and three scallops in 6 L of seawater with aeration in the dark (1.25 L min-1, 12:12 h L:D) significantly decreased the number and abundance of Vibrio after 3 days. The activities of superoxide dismutase, catalase, pyruvate kinase, and lactate dehydrogenase in C. farreri were significantly higher, indicating that its immune defense and metabolism enhanced in this optimal co-culture system. High DO and pH levels significantly decreased the alpha diversity of microorganisms, and the abundance of pathogenic microorganisms decreased. The optimal co-culture system was effective for the control of vibriosis. Generally, our findings suggest that seaweeds could be used to enhance the aquaculture environment by conferring healthy and sustainable functions in the future.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Shandong Province Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Z.); (W.L.); (S.L.)
- Lab for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lin
- Shandong Province Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Z.); (W.L.); (S.L.)
- Lab for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Sijie Liang
- Shandong Province Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Z.); (W.L.); (S.L.)
- Lab for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guangda Sun
- Changdao Dongxing Aquaculture Co., Ltd., Changdao 265800, China;
| | - Jianting Yao
- Shandong Province Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Z.); (W.L.); (S.L.)
- Lab for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Delin Duan
- Shandong Province Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Z.); (W.L.); (S.L.)
- Lab for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Park JE, Patnaik BB, Sang MK, Song DK, Jeong JY, Hong CE, Kim YT, Shin HJ, Ziwei L, Patnaik HH, Hwang HJ, Park SY, Kang SW, Ko JH, Lee JS, Park HS, Jo YH, Han YS, Lee YS. Transcriptome sequencing of the endangered land snail Karaftohelix adamsi from the Island Ulleung: De novo assembly, annotation, valuation of fitness genes and SSR markers. Genes Genomics 2024; 46:851-870. [PMID: 38809491 DOI: 10.1007/s13258-024-01511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/08/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The Bradybaenidae snail Karaftohelix adamsi is endemic to Korea, with the species tracked from Island Ulleung in North Gyeongsang Province of South Korea. K. adamsi has been classified under the Endangered Wildlife Class II species of Korea and poses a severe risk of extinction following habitat disturbances. With no available information at the DNA (genome) or mRNA (transcriptome) level for the species, conservation by utilizing informed molecular resources seems difficult. OBJECTIVE In this study, we used the Illumina short-read sequencing and Trinity de novo assembly to draft the reference transcriptome of K. adamsi. RESULTS After assembly, 13,753 unigenes were obtained of which 10,511 were annotated to public databases (a maximum of 10,165 unigenes found homologs in PANM DB). A total of 6,351, 3,535, 358, and 3,407 unigenes were ascribed to the functional categories under KOG, GO, KEGG, and IPS, respectively. The transcripts such as the HSP 70, aquaporin, TLR, and MAPK, among others, were screened as putative functional resources for adaptation. DNA transposons were found to be thickly populated in comparison to retrotransposons in the assembled unigenes. Further, 2,164 SSRs were screened with the promiscuous presence of dinucleotide repeats such as AC/GT and AG/CT. CONCLUSION The transcriptome-guided discovery of molecular resources in K. adamsi will not only serve as a basis for functional genomics studies but also provide sustainable tools to be utilized for the protection of the species in the wild. Moreover, the development of polymorphic SSRs is valuable for the identification of species from newer habitats and cross-species genotyping.
Collapse
Affiliation(s)
- Jie Eun Park
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Chungnam, 31, Asan, South Korea
| | - Bharat Bhusan Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Nuapadhi, Balasore, Odisha, 756089, India
| | - Min Kyu Sang
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Chungnam, 31, Asan, South Korea
| | - Dae Kwon Song
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Chungnam, 31, Asan, South Korea
| | - Jun Yang Jeong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Chan Eui Hong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Yong Tae Kim
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Hyeon Jun Shin
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Liu Ziwei
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Hongray Howrelia Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- PG Department of Zoology, BJB Autonomous College, Bhubaneswar, Odisha, 751014, India
| | - Hee Ju Hwang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - So Young Park
- Biodiversity Research Team, Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, South Korea
| | - Se Won Kang
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, South Korea
| | - Jung Ho Ko
- Police Science Institute, Korean National Police University, Asan, 31539, Chungnam, Korea
| | - Jun Sang Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD, 621-6 Banseok-Dong, Yuseong-Gu, Daejeon, 34069, Korea
| | - Yong Hun Jo
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, South Korea
| | - Yong Seok Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea.
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Chungnam, 31, Asan, South Korea.
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, Korea.
| |
Collapse
|
4
|
Liu A, Hou X, Zhang J, Wang W, Dong X, Li J, Zhu X, Xing Q, Huang X, Hu J, Bao Z. Tissue-Specific and Time-Dependent Expressions of PC4s in Bay Scallop ( Argopecten irradians irradians) Reveal Function Allocation in Thermal Response. Genes (Basel) 2022; 13:genes13061057. [PMID: 35741819 PMCID: PMC9223095 DOI: 10.3390/genes13061057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Transcriptional coactivator p15 (PC4) encodes a structurally conserved but functionally diverse protein that plays crucial roles in RNAP-II-mediated transcription, DNA replication and damage repair. Although structures and functions of PC4 have been reported in most vertebrates and some invertebrates, the PC4 genes were less systematically identified and characterized in the bay scallop Argopecten irradians irradians. In this study, five PC4 genes (AiPC4s) were successfully identified in bay scallops via whole-genome scanning through in silico analysis. Protein structure and phylogenetic analyses of AiPC4s were conducted to determine the identities and evolutionary relationships of these genes. Expression levels of AiPC4s were assessed in embryos/larvae at all developmental stages, in healthy adult tissues and in different tissues (mantles, gills, hemocytes and hearts) being processed under 32 °C stress with different time durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d and 10 d). Spatiotemporal expression profiles of AiPC4s suggested the functional roles of the genes in embryos/larvae at all developmental stages and in healthy adult tissues in bay scallop. Expression regulations (up- and down-) of AiPC4s under high-temperature stress displayed both tissue-specific and time-dependent patterns with function allocations, revealing that AiPC4s performed differentiated functions in response to thermal stress. This work provides clues of molecular function allocation of PC4 in scallops in response to thermal stress and helps in illustrating how marine bivalves resist elevated seawater temperature.
Collapse
Affiliation(s)
- Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Wen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xuecheng Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Jianshu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-532-82031969
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|