1
|
Hu M, Chen B, Luo Y. Computational fluid dynamics modelling of hemodynamics in aortic aneurysm and dissection: a review. Front Bioeng Biotechnol 2025; 13:1556091. [PMID: 40190707 PMCID: PMC11968685 DOI: 10.3389/fbioe.2025.1556091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Hemodynamic analysis based on computational fluid dynamics (CFD) modelling is expected to improve risk stratification for patients with aortic aneurysms and dissections. However, the parameter settings in CFD simulations involve considerable variability and uncertainty. Additionally, the exact relationship between hemodynamic features and disease progression remains unclear. These challenges limit the clinical application of aortic hemodynamic models. This review presents a detailed overview of the workflow for CFD-based aortic hemodynamic analysis, with a focus on recent advancements in the field. We also conducted a systematic review of 27 studies with large sample sizes (n > 5) that examine the hemodynamic characteristics of aortic aneurysms and dissections. Some studies identified consistent relationships between hemodynamic features and disease progression, reinforcing the potential for clinical application of aortic hemodynamic models. However, limitations such as small sample sizes and oversimplified patient-specific models remain. These findings emphasize the need for larger, more detailed studies to refine CFD modelling strategies, strengthen the connection between hemodynamics and diseases, and ultimately facilitate the clinical use of aortic hemodynamic models in disease management.
Collapse
Affiliation(s)
- Mengqiang Hu
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Technology, Boea Wisdom (Hangzhou) Network Technology Co., Ltd., Hangzhou, China
| | - Bing Chen
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yuanming Luo
- Department of Mechanical Engineering, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
2
|
Ding CCA, Dokos S, Bakir AA, Zamberi NJ, Liew YM, Chan BT, Md Sari NA, Avolio A, Lim E. Simulating impaired left ventricular-arterial coupling in aging and disease: a systematic review. Biomed Eng Online 2024; 23:24. [PMID: 38388416 PMCID: PMC10885508 DOI: 10.1186/s12938-024-01206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Aortic stenosis, hypertension, and left ventricular hypertrophy often coexist in the elderly, causing a detrimental mismatch in coupling between the heart and vasculature known as ventricular-vascular (VA) coupling. Impaired left VA coupling, a critical aspect of cardiovascular dysfunction in aging and disease, poses significant challenges for optimal cardiovascular performance. This systematic review aims to assess the impact of simulating and studying this coupling through computational models. By conducting a comprehensive analysis of 34 relevant articles obtained from esteemed databases such as Web of Science, Scopus, and PubMed until July 14, 2022, we explore various modeling techniques and simulation approaches employed to unravel the complex mechanisms underlying this impairment. Our review highlights the essential role of computational models in providing detailed insights beyond clinical observations, enabling a deeper understanding of the cardiovascular system. By elucidating the existing models of the heart (3D, 2D, and 0D), cardiac valves, and blood vessels (3D, 1D, and 0D), as well as discussing mechanical boundary conditions, model parameterization and validation, coupling approaches, computer resources and diverse applications, we establish a comprehensive overview of the field. The descriptions as well as the pros and cons on the choices of different dimensionality in heart, valve, and circulation are provided. Crucially, we emphasize the significance of evaluating heart-vessel interaction in pathological conditions and propose future research directions, such as the development of fully coupled personalized multidimensional models, integration of deep learning techniques, and comprehensive assessment of confounding effects on biomarkers.
Collapse
Affiliation(s)
- Corina Cheng Ai Ding
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Azam Ahmad Bakir
- University of Southampton Malaysia Campus, 79200, Iskandar Puteri, Johor, Malaysia
| | - Nurul Jannah Zamberi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yih Miin Liew
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bee Ting Chan
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Selangor, Malaysia
| | - Nor Ashikin Md Sari
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Alberto Avolio
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Einly Lim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Sharifi H, Lee LC, Campbell KS, Wenk JF. A multiscale finite element model of left ventricular mechanics incorporating baroreflex regulation. Comput Biol Med 2024; 168:107690. [PMID: 37984204 PMCID: PMC11017291 DOI: 10.1016/j.compbiomed.2023.107690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Cardiovascular function is regulated by a short-term hemodynamic baroreflex loop, which tries to maintain arterial pressure at a normal level. In this study, we present a new multiscale model of the cardiovascular system named MyoFE. This framework integrates a mechanistic model of contraction at the myosin level into a finite-element-based model of the left ventricle pumping blood through the systemic circulation. The model is coupled with a closed-loop feedback control of arterial pressure inspired by a baroreflex algorithm previously published by our team. The reflex loop mimics the afferent neuron pathway via a normalized signal derived from arterial pressure. The efferent pathway is represented by a kinetic model that simulates the net result of neural processing in the medulla and cell-level responses to autonomic drive. The baroreflex control algorithm modulates parameters such as heart rate and vascular tone of vessels in the lumped-parameter model of systemic circulation. In addition, it spatially modulates intracellular Ca2+ dynamics and molecular-level function of both the thick and the thin myofilaments in the left ventricle. Our study demonstrates that the baroreflex algorithm can maintain arterial pressure in the presence of perturbations such as acute cases of altered aortic resistance, mitral regurgitation, and myocardial infarction. The capabilities of this new multiscale model will be utilized in future research related to computational investigations of growth and remodeling.
Collapse
Affiliation(s)
- Hossein Sharifi
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine and Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Jonathan F Wenk
- Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Zhang H, Patton HN, Wood GA, Yan P, Loew LM, Acker CD, Walcott GP, Rogers JM. Optical mapping of cardiac electromechanics in beating in vivo hearts. Biophys J 2023; 122:4207-4219. [PMID: 37775969 PMCID: PMC10645561 DOI: 10.1016/j.bpj.2023.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
Optical mapping has been widely used in the study of cardiac electrophysiology in motion-arrested, ex vivo heart preparations. Recent developments in motion artifact mitigation techniques have made it possible to optically map beating ex vivo hearts, enabling the study of cardiac electromechanics using optical mapping. However, the ex vivo setting imposes limitations on optical mapping such as altered metabolic states, oversimplified mechanical loads, and the absence of neurohormonal regulation. In this study, we demonstrate optical electromechanical mapping in an in vivo heart preparation. Swine hearts were exposed via median sternotomy. Voltage-sensitive dye, either di-4-ANEQ(F)PTEA or di-5-ANEQ(F)PTEA, was injected into the left anterior descending artery. Fluorescence was excited by alternating green and amber light for excitation ratiometry. Cardiac motion during sinus and paced rhythm was tracked using a marker-based method. Motion tracking and excitation ratiometry successfully corrected most motion artifact in the membrane potential signal. Marker-based motion tracking also allowed simultaneous measurement of epicardial deformation. Reconstructed membrane potential and mechanical deformation measurements were validated using monophasic action potentials and sonomicrometry, respectively. Di-5-ANEQ(F)PTEA produced longer working time and higher signal/noise ratio than di-4-ANEQ(F)PTEA. In addition, we demonstrate potential applications of the new optical mapping system including electromechanical mapping during vagal nerve stimulation, fibrillation/defibrillation. and acute regional ischemia. In conclusion, although some technical limitations remain, optical mapping experiments that simultaneously image electrical and mechanical function can be conducted in beating, in vivo hearts.
Collapse
Affiliation(s)
- Hanyu Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Haley N Patton
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Garrett A Wood
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ping Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Corey D Acker
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Gregory P Walcott
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jack M Rogers
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
5
|
Stonko DP, Edwards J, Abdou H, Treffalls RN, Walker P, DeMartino RR, Mendes BC, Hicks CW, Morrison JJ. Thoracic Endovascular Aortic RepairAcutely Augments Left Ventricular Biomechanics in An Animal Model: A Mechanism for Postoperative Heart Failure and Hypertension. Ann Vasc Surg 2023; 97:18-26. [PMID: 37068623 PMCID: PMC10754260 DOI: 10.1016/j.avsg.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Thoracic aortic stent grafts are thought to decrease aortic compliance and may contribute to hypertension and heart failure after thoracic endovascular aortic repair (TEVAR). Left ventricular (LV) biomechanics immediately after TEVAR, however, have not been quantified. Pressure-volume (PV) loop analysis provides gold-standard LV functional information. The aim of this study is to use an LV PV loop catheter and analysis to characterize the LV biomechanics before and acutely after TEVAR. METHODS Anesthetized Yorkshire swine (N = 6) were percutaneously instrumented with an LV PV loop catheter. A 20 mm × 10 cm stent graft was deployed distal to the left subclavian via the femoral artery under fluoroscopy. Cardiac biomechanics were assessed before and after TEVAR. As a sensitivity analysis, inferior vena cava occlusion with PV loop assessment was performed pre and post-TEVAR in 1 animal to obtain preload and afterload-independent end-systolic and end-diastolic PV relationships (ESPVR and EDPVR). RESULTS All animals underwent successful instrumentation and TEVAR. Post-TEVAR, all 6 animals had higher mean LV ESP (106 vs. 118 mm Hg, P = 0.04), with no change in the EDPVR. inferior vena cava occlusion also moved the ESPVR curve upward and leftward, indicating increased LV work per unit time. There was no augmentation of EDPVR following TEVAR (P > 0.05). Postmortem exams in all animals revealed appropriate stent placement and no technical complications. CONCLUSIONS TEVAR was associated with an acute increase in LV end-systolic pressure and shift in the ESPVR, indicating increased ventricular work. This data provides potential mechanistic insights into the development of post-TEVAR hypertension and heart failure. Future stent graft innovation should focus on minimizing the changes in cardiac physiology.
Collapse
Affiliation(s)
- David P Stonko
- Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD; R. Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, MD
| | - Joseph Edwards
- R. Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, MD
| | - Hossam Abdou
- R. Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, MD
| | | | - Patrick Walker
- R. Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, MD
| | | | - Bernardo C Mendes
- Divison of Vascular and Endovascular Surgery, Mayo Clinic, Rochester, MN
| | - Caitlin W Hicks
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, The Johns Hopkins Hospital, Baltimore, MD
| | | |
Collapse
|
6
|
Wéber R, Gyürki D, Paál G. First blood: An efficient, hybrid one- and zero-dimensional, modular hemodynamic solver. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3701. [PMID: 36948891 DOI: 10.1002/cnm.3701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/24/2023] [Accepted: 03/11/2023] [Indexed: 05/13/2023]
Abstract
Low-dimensional (1D or 0D) models can describe the whole human blood circulation, for example, 1D distributed parameter model for the arterial network and 0D concentrated models for the heart or other organs. This paper presents a combined 1D-0D solver, called first_blood, that solves the governing equations of fluid dynamics to model low-dimensional hemodynamic effects. An extended method of characteristics is applied here to solve the momentum, and mass conservation equations and the viscoelastic wall model equation, mimicking the material properties of arterial walls. The heart and the peripheral lumped models are solved with a general zero-dimensional (0D) nonlinear solver. The model topology can be modular, that is, first_blood can solve any 1D-0D hemodynamic model. To demonstrate the applicability of first_blood, the human arterial system, the heart and the peripherals are modelled using the solver. The simulation time of a heartbeat takes around 2 s, that is, first_blood requires only twice the real-time for the simulation using an average PC, which highlights the computational efficiency. The source code is available on GitHub, that is, it is open source. The model parameters are based on the literature suggestions and on the validation of output data to obtain physiologically relevant results.
Collapse
Affiliation(s)
- Richárd Wéber
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dániel Gyürki
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - György Paál
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
7
|
Budiman H, Wakita R, Ito T, Maeda S. Factors Associated with Variability in Pulse Wave Transit Time Using Pulse Oximetry: A Retrospective Study. J Clin Med 2022; 11:jcm11143963. [PMID: 35887725 PMCID: PMC9319785 DOI: 10.3390/jcm11143963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
Pulse wave transit time (PWTT) is the time difference between the occurrence of an R-wave on an electrocardiogram and the detection of pulsatile signals on a pulse oximeter, which reflects changes in blood pressure (BP) corresponding to the vessel wall compliance. However, the factors affecting PWTT variability have not been determined. Thus, we investigated the BP changes associated with variations in PWTT and identified the clinical characteristics associated with these variations. Data related to 605 cases of dental procedures performed under intravenous conscious sedation from April 2020 to November 2021 were collected, and 485 cases were enrolled. Heart rate, systolic blood pressure before and after local anesthesia (LA) administration, and crest and trough PWTT waves during LA administration were recorded. Thereafter, PWTT variability was calculated; cases were divided into two groups: large PWTT variability (LPV, n = 357) and small PWTT variability (SPV, n = 128). The index of large PWTT variability could not detect changes in BP. Logistic regression analysis revealed that factors, such as LA use, age, hypertension, and dental treatment phobia were associated with PWTT variability. The use of epinephrine more than 36.25 µg in each LA resulted in PWTT variability of more than 15 ms.
Collapse
|