1
|
Hu K, Jin R, Liu J, Zhu J, Dai W, Wang Y, Li Y, Liu F. Functional characterization of the InR/PI3K/AKT signaling pathway in female reproduction of the predatory bug Cyrtorhinus lividipennis (Hemiptera: Miridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae113. [PMID: 38783398 DOI: 10.1093/jee/toae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The insulin signaling (IIS) pathway plays a key role in the regulation of various physiological functions in animals. However, the involvement of IIS pathway in the reproduction of natural enemy insects remains enigmatic. Here, 3 key genes (named ClInR, ClPI3K, and ClAKT) related to IIS pathway were cloned from Cyrtorhinus lividipennis (Reuter) (Hemiptera: Miridae), an important natural enemy in the rice ecosystem. These 3 proteins had the typical features of corresponding protein families and shared high similarity with their respective homologs from the Hemipteran species. The ClInR, ClPI3K, and ClAKT were highly expressed in the adult stage. Tissue distribution analysis revealed that ClInR, ClPI3K, and ClAKT were highly expressed in the midgut and ovary of adults. Silencing of ClInR, ClPI3K, and ClAKT caused 92.1%, 72.1%, and 57.8% reduction in the expression of ClVg, respectively. Depletion of these 3 genes impaired vitellogenin synthesis and ovary development. Moreover, the fecundity in the dsInR, dsPI3K, and dsAKT injected females were 53.9%, 50.8%, and 48.5% lower than the control treatment, respectively. These results indicated that ClInR, ClPI3K, and ClAKT are of great importance for the reproduction of C. lividipennis. Our results advance the knowledge about the molecular mechanism of reproduction regulation in natural enemy insects.
Collapse
Affiliation(s)
- Kui Hu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Rong Jin
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianqi Liu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jun Zhu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wei Dai
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ying Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Fang Liu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety (Yangzhou University), Jiangsu, Yangzhou 225009, China
| |
Collapse
|
2
|
Xu H, Zhang Z, Zhang Z, Peng J, Gao Y, Li K, Chen J, Du J, Yan S, Zhang D, Zhou X, Shi X, Liu Y. Effects of insulin-like peptide 7 in Bemisia tabaci MED on tomato chlorosis virus transmission. PEST MANAGEMENT SCIENCE 2023; 79:1508-1517. [PMID: 36533303 DOI: 10.1002/ps.7329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tomato chlorosis virus (ToCV) is a semi-persistent plant virus that is primarily transmitted by the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). It causes a serious disease that lowers tomato yield. Insulin-like peptide (ILP), an insulin homolog, regulates trehalose metabolism in a variety of insects. In a previous study, we discovered that trehalose metabolism is required for whiteflies to transmit ToCV effectively. Furthermore, transcriptome sequencing revealed that the BtILP7 gene was highly expressed in B. tabaci infected with ToCV. Therefore, the whitefly ILP7 gene may facilitate the transmission of ToCV and be an attractive target for the control of whiteflies and subsequently ToCV. RESULTS The ToCV content in B. tabaci MED was found to be correlated with BtILP7 gene expression. Subsequent RNA interference (RNAi) of the BtILP7 gene had a significant impact on B. tabaci MED's trehalose metabolism and reproductive capacity, as well as ability to transmit ToCV. CONCLUSIONS These results indicate that the BtILP7 gene was closely related to ToCV transmission by regulating trehalose metabolism and reproduction behavior, thus providing a secure and environmentally friendly management strategy for the control of whiteflies and ToCV-caused disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- HuiNan Xu
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - ZhanHong Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jing Peng
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Gao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - KaiLong Li
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jianbin Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jiao Du
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Shuo Yan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - DeYong Zhang
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - XuGuo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - XiaoBin Shi
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Liu
- Longping Branch, School of Biology, Hunan University, Changsha, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
3
|
Kim CY, Kim YG. Insulin-like Peptides of the Western Flower Thrips Frankliniella occidentalis and Their Mediation of Immature Development. INSECTS 2023; 14:47. [PMID: 36661977 PMCID: PMC9864108 DOI: 10.3390/insects14010047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 05/23/2023]
Abstract
Insulin-like peptides (ILPs) mediate various physiological processes in insects. Specifically, ILP expression is required for immature development in different insects. The western flower thrips, Frankliniella occidentalis, is polyphagous, but its occurrence and population density vary among different hosts. This study assesses the developmental variations in the thrips through quantitative analysis of their ILP expressions. Two types of ILPs (Fo-ILP1 and Fo-ILP2) were identified from the genome of F. occidentalis, and both ILPs were predicted to have the characteristics of signal peptides and B-C-A chains linked by cysteines. A phylogenetic analysis indicates that these two ILPs in the thrips are clustered with the ILP1 of Drosophila melanogaster, suggesting their physiological roles in growth. In addition, the two ILP genes were relatively highly expressed at all feeding stages, but their expression was reduced during the nonfeeding prepupal and pupal stages. Furthermore, RNA interference of each ILP expression led to significant developmental retardation. In validating the ILP expression in the thrips' development, five different varieties of host hot peppers were assessed in a choice test, along with the immature development of F. occidentalis. The expression levels of the two ILP genes were highly correlated with variations in the immature developmental rates of different hot pepper varieties. These suggest that Fo-ILP1 and Fo-ILP2 mediate the immature development of F. occidentalis by sensing different nutritional values of hot peppers. This study is the first report on ILPs in thysanopteran insects.
Collapse
Affiliation(s)
| | - Yong-Gyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
4
|
Gao Y, Zhang X, Yuan J, Zhang C, Li S, Li F. CRISPR/Cas9-mediated mutation on an insulin-like peptide encoding gene affects the growth of the ridgetail white prawn Exopalaemon carinicauda. Front Endocrinol (Lausanne) 2022; 13:986491. [PMID: 36246877 PMCID: PMC9556898 DOI: 10.3389/fendo.2022.986491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Insulin-like peptides (ILPs) play key roles in animal growth, metabolism and reproduction in vertebrates. In crustaceans, one type of ILPs, insulin-like androgenic gland hormone (IAG) had been reported to be related to the sex differentiations. However, the function of other types of ILPs is rarely reported. Here, we identified another type of ILPs in the ridgetail white prawn Exopalaemon carinicauda (EcILP), which is an ortholog of Drosophila melanogaster ILP7. Sequence characterization and expression analyses showed that EcILP is similar to vertebrate insulin/IGFs and insect ILPs in its heterodimeric structure and expression profile. Using CRISPR/Cas9 genome editing technology, we generated EcILP knockout (KO) prawns. EcILP-KO individuals have a significant higher growth-inhibitory trait and mortality than those in the normal group. In addition, knockdown of EcILP by RNA interference (RNAi) resulted in slower growth rate and higher mortality. These results indicated that EcILP was an important growth regulator in E. carinicauda.
Collapse
Affiliation(s)
- Yi Gao
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianbo Yuan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chengsong Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|