1
|
Shekatkar M, Kheur S, Deshpande S, Sanap A, Kharat A, Navalakha S, Gupta A, Kheur M, Bhonde R, Merchant YP. Angiogenic Potential of Various Oral Cavity-Derived Mesenchymal Stem Cells and Cell-Derived Secretome: A Systematic Review and Meta-Analysis. Eur J Dent 2024; 18:712-742. [PMID: 37995732 PMCID: PMC11290931 DOI: 10.1055/s-0043-1776315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
Recent evidence suggests the immense potential of human mesenchymal stem cell (hMSC) secretome conditioned medium-mediated augmentation of angiogenesis. However, angiogenesis potential varies from source and origin. The hMSCs derived from the oral cavity share an exceptional quality due to their origin from a hypoxic environment. Our systematic review aimed to compare the mesenchymal stem cells (MSCs) derived from various oral cavity sources and cell-derived secretomes, and evaluate their angiogenic potential. A literature search was conducted using PubMed and Scopus from January 2000 to September 2020. Source-wise outcomes were systematically analyzed using in vitro, in vivo, and in ovo studies, emphasizing endothelial cell migration, tube formation, and blood vessel formation. Ninety-four studies were included in the systematic review, out of which 4 studies were subsequently included in the meta-analysis. Prominent growth factors and other bioactive components implicated in improving angiogenesis were included in the respective studies. The findings suggest that oral tissues are a rich source of hMSCs. The meta-analysis revealed a positive correlation between dental pulp-derived MSCs (DPMSCs) and stem cells derived from apical papilla (SCAP) compared to human umbilical cord-derived endothelial cell lines as a control. It shows a statistically significant positive correlation between the co-culture of human umbilical vein endothelial cells (HUVECs) and DPMSCs with tubule length formation and total branching points. Our meta-analysis revealed that oral-derived MSCs (dental pulp stem cells and SCAP) carry a better angiogenic potential in vitro than endothelial cell lines alone. The reviewed literature illustrates that oral cavity-derived MSCs (OC-MSCs) increased angiogenesis. The present literature reveals a dearth of investigations involving sources other than dental pulp. Even though OC-MSCs have revealed more significant potential than other MSCs, more comprehensive, target-oriented interinstitutional prospective studies are warranted to determine whether oral cavity-derived stem cells are the most excellent sources of significant angiogenic potential.
Collapse
Affiliation(s)
- Madhura Shekatkar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Shantanu Deshpande
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed to be) University Dental College and Hospital, Navi Mumbai, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Shivani Navalakha
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Archana Gupta
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Mohit Kheur
- Department of Prosthodontics, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, India
| | | | - Yash P. Merchant
- Department of Oral and Maxillofacial Surgery, Dr. D. Y. Patil Dental College, and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| |
Collapse
|
2
|
Andeen NK, Kung VL, Avasare RS. NELL1 membranous nephropathy: clinical associations provide mechanistic clues. FRONTIERS IN NEPHROLOGY 2024; 4:1323432. [PMID: 38596642 PMCID: PMC11002321 DOI: 10.3389/fneph.2024.1323432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Neural epidermal growth factor-like 1 (NELL1) membranous nephropathy (MN) is notable for its segmental deposit distribution, IgG1 dominant deposits, and comparatively high rate of spontaneous remission. It has been associated with a variety of exposures and secondary conditions, specifically use of thiol-containing medications - including lipoic acid, bucillamine, and tiopronin - as well as traditional indigenous medications (TIM) particularly those with high mercury content, and non-steroid anti-inflammatory drugs (NSAIDs). Malignancies, graft vs. host disease (GVHD), infection, and autoimmune conditions have also been associated with NELL1 MN. Herein, we provide a detailed summary of the clinicopathologic features of NELL1 and associations with underlying conditions, with a focus on treatment and outcomes. Rare cases of dual NELL1 and phospholipase A2 receptor (PLA2R) positive MN are reviewed. Genome-wide association study of NELL1, role of NELL1 in other physiologic and pathologic processes, and connection between NELL1 MN and malignancy with relevance of NELL1 tumor staining are examined. Finally, relationships and potential disease mechanisms of thiol- and mercury- associated NELL1 MN are discussed.
Collapse
Affiliation(s)
- Nicole K. Andeen
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Vanderlene L. Kung
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Rupali S. Avasare
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|