1
|
Missen KJ, Assländer L, Babichuk A, Chua R, Inglis JT, Carpenter MG. The role of torque feedback in standing balance. J Neurophysiol 2023; 130:585-595. [PMID: 37492897 DOI: 10.1152/jn.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
It has been proposed that sensory force/pressure cues are integrated within a positive feedback mechanism, which accounts for the slow dynamics of human standing behavior and helps align the body with gravity. However, experimental evidence of this mechanism remains scarce. This study tested predictions of a positive torque feedback mechanism for standing balance, specifically that differences between a "reference" torque and actual torque are self-amplified, causing the system to generate additional torque. Seventeen healthy young adults were positioned in an apparatus that permitted normal sway at the ankle until a brake on the apparatus was applied, discreetly "locking" body movement during stance. Once locked, a platform positioned under the apparatus remained in place (0 mm) or slowly translated backward (3 mm or 6 mm), tilting subjects forward. Postural behavior was characterized by two distinct responses: the center of pressure (COP) offset (i.e., change in COP elicited by the surface translation) and the COP drift (i.e., change in COP during the sustained tilt). Model simulations were performed using a linear balance control model containing torque feedback to provide a conceptual basis for the interpretation of experimental results. Holding the body in sustained tilt positions resulted in COP drifting behavior, reflecting attempts of the balance control system to restore an upright position through increases in plantar flexor torque. In line with predictions of positive torque feedback, larger COP offsets led to faster increases in COP over time. These findings provide experimental support for a positive torque feedback mechanism involved in the control of standing balance.NEW & NOTEWORTHY Using model simulations and a novel experimental approach, we tested behavioral predictions of a sensory torque feedback mechanism involved in the control of upright standing. Torque feedback is thought to reduce the effort required to stand and play a functional role in slowly aligning the body with gravity. Our results provide experimental evidence of a torque feedback mechanism and offer new and valuable insights into the sensorimotor control of human balance.
Collapse
Affiliation(s)
- Kyle J Missen
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lorenz Assländer
- Human Performance Research Centre, University of Konstanz, Konstanz, Germany
| | - Alison Babichuk
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Romeo Chua
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Sozzi S, Ghai S, Schieppati M. Incongruity of Geometric and Spectral Markers in the Assessment of Body Sway. Front Neurol 2022; 13:929132. [PMID: 35923830 PMCID: PMC9339954 DOI: 10.3389/fneur.2022.929132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 01/15/2023] Open
Abstract
Different measurements of body oscillations in the time or frequency domain are being employed as markers of gait and balance abnormalities. This study investigates basic relationships within and between geometric and spectral measures in a population of young adult subjects. Twenty healthy subjects stood with parallel feet on a force platform with and without a foam pad. Adaptation effects to prolonged stance were assessed by comparing the first and last of a series of eight successive trials. Centre of Foot Pressure (CoP) excursions were recorded with Eyes Closed (EC) and Open (EO) for 90s. Geometric measures (Sway Area, Path Length), standard deviation (SD) of the excursions, and spectral measure (mean power Spectrum Level and Median Frequency), along the medio-lateral (ML) and antero-posterior (AP) direction were computed. Sway Area was more strongly associated than Path Length with CoP SD and, consequently, with mean Spectrum Level for both ML and AP, and both visual and surface conditions. The squared-SD directly specified the mean power Spectrum Level of CoP excursions (ML and AP) in all conditions. Median Frequency was hardly related to Spectrum Level. Adaptation had a confounding effect, whereby equal values of Sway Area, Path Length, and Spectrum Level corresponded to different Median Frequency values. Mean Spectrum Level and SDs of the time series of CoP ML and AP excursions convey the same meaning and bear an acceptable correspondence with Sway Area values. Shifts in Median Frequency values represent important indications of neuromuscular control of stance and of the effects of vision, support conditions, and adaptation. The Romberg Quotient EC/EO for a given variable is contingent on the compliance of the base of support and adaptation, and different between Sway Area and Path Length, but similar between Sway Area and Spectrum Level (AP and ML). These measures must be taken with caution in clinical studies, and considered together in order to get a reliable indication of overall body sway, of modifications by sensory and standing condition, and of changes with ageing, medical conditions and rehabilitation treatment. However, distinct measures shed light on the discrete mechanisms and complex processes underpinning the maintenance of stance.
Collapse
Affiliation(s)
- Stefania Sozzi
- Istituti Clinici Scientifici Maugeri IRCCS, Centro Studi Attività Motorie (CSAM), Pavia, Italy
| | - Shashank Ghai
- Department of Physical Therapy, Rsgbiogen, New Delhi, India
| | - Marco Schieppati
- Istituti Clinici Scientifici Maugeri IRCCS, Centro Studi Attività Motorie (CSAM), Pavia, Italy
- *Correspondence: Marco Schieppati
| |
Collapse
|
3
|
Otomi Y, Irahara S, Inoue H, Shinya T, Otsuka H, Harada M. Increased 18F-FDG Uptake in the Axillary Lymph Nodes of the Vaccinated Side Associated with COVID-19 Vaccination. Mol Imaging Radionucl Ther 2022; 31:169-171. [PMID: 35771098 PMCID: PMC9246311 DOI: 10.4274/mirt.galenos.2021.22590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A 50-year-old female patient underwent (18fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) following modified radical mastectomy for cancer of the left breast. Ten days before the PET/CT, the coronavirus disease-2019 (COVID-19) vaccine was injected intramuscularly into the right deltoid muscle. Increased (18F-FDG uptake of maximum standardized uptake value (11.0) was observed in the lymph nodes of the right axilla, which had not been observed in the previous PET/CT. The size of the oval-shaped lymph nodes was up to approximately 11×9 mm; however, it was larger than that observed on the previous PET/CT. We contemplate that the increased (18F-FDG uptake was a reactive change in the lymph nodes associated with the COVID-19 vaccine.
Collapse
Affiliation(s)
- Yoichi Otomi
- Tokushima University, Department of Radiology, Tokushima, Japan
| | - Saho Irahara
- Tokushima University, Department of Radiology, Tokushima, Japan
| | - Hiroaki Inoue
- Tokushima University, Department of Thoracic and Endocrine Surgery and Oncology, Tokushima, Japan
| | | | - Hideki Otsuka
- Tokushima University, Department of Radiology, Tokushima, Japan
| | - Masafumi Harada
- Tokushima University, Department of Radiology, Tokushima, Japan
| |
Collapse
|