1
|
Petkova-Kirova P, Murciano N, Iacono G, Jansen J, Simionato G, Qiao M, Van der Zwaan C, Rotordam MG, John T, Hertz L, Hoogendijk AJ, Becker N, Wagner C, Von Lindern M, Egee S, Van den Akker E, Kaestner L. The Gárdos Channel and Piezo1 Revisited: Comparison between Reticulocytes and Mature Red Blood Cells. Int J Mol Sci 2024; 25:1416. [PMID: 38338693 PMCID: PMC10855361 DOI: 10.3390/ijms25031416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/12/2024] Open
Abstract
The Gárdos channel (KCNN4) and Piezo1 are the best-known ion channels in the red blood cell (RBC) membrane. Nevertheless, the quantitative electrophysiological behavior of RBCs and its heterogeneity are still not completely understood. Here, we use state-of-the-art biochemical methods to probe for the abundance of the channels in RBCs. Furthermore, we utilize automated patch clamp, based on planar chips, to compare the activity of the two channels in reticulocytes and mature RBCs. In addition to this characterization, we performed membrane potential measurements to demonstrate the effect of channel activity and interplay on the RBC properties. Both the Gárdos channel and Piezo1, albeit their average copy number of activatable channels per cell is in the single-digit range, can be detected through transcriptome analysis of reticulocytes. Proteomics analysis of reticulocytes and mature RBCs could only detect Piezo1 but not the Gárdos channel. Furthermore, they can be reliably measured in the whole-cell configuration of the patch clamp method. While for the Gárdos channel, the activity in terms of ion currents is higher in reticulocytes compared to mature RBCs, for Piezo1, the tendency is the opposite. While the interplay between Piezo1 and Gárdos channel cannot be followed using the patch clamp measurements, it could be proved based on membrane potential measurements in populations of intact RBCs. We discuss the Gárdos channel and Piezo1 abundance, interdependencies and interactions in the context of their proposed physiological and pathophysiological functions, which are the passing of small constrictions, e.g., in the spleen, and their active participation in blood clot formation and thrombosis.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Department of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Nicoletta Murciano
- Nanion Technologies, 80339 Munich, Germany; (N.M.); (M.G.R.); (N.B.)
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
| | - Giulia Iacono
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Julia Jansen
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| | - Greta Simionato
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
- Department of Experimental Surgery, Campus University Hospital, Saarland University, 66421 Homburg, Germany
| | - Min Qiao
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| | - Carmen Van der Zwaan
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | | | - Thomas John
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| | - Laura Hertz
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| | - Arjan J. Hoogendijk
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Nadine Becker
- Nanion Technologies, 80339 Munich, Germany; (N.M.); (M.G.R.); (N.B.)
| | - Christian Wagner
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Marieke Von Lindern
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Stephane Egee
- Biological Station Roscoff, Sorbonne University, CNRS, UMR8227 LBI2M, F-29680 Roscoff, France;
- Laboratory of Excellence GR-Ex, F-75015 Paris, France
| | - Emile Van den Akker
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| |
Collapse
|
2
|
Brewer CJ, Makhamreh MM, Shivashankar K, McLaren R, Toro M, Berger SI, Al-Kouatly HB. PIEZO1 is the most common monogenic etiology of non-immune hydrops fetalis detected by prenatal exome sequencing. Prenat Diagn 2023; 43:1556-1566. [PMID: 37902181 DOI: 10.1002/pd.6451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
OBJECTIVE To clarify the relevance of PIEZO1 variants detected by prenatal exome in the context of non-immune hydrops fetalis (NIHF). METHODS A systematic review of prenatal exome studies from 1/1/2000-8/1/2022 was performed. Thirty-six studies met the inclusion criteria. PIEZO1 variants were categorized by disease mode (dominant (AD) versus recessive (AR)) and classified by the American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS Twenty-two pregnancies with 35 distinct PIEZO1 variants were included. We deemed PIEZO1 variants to be "likely diagnostic" in 12/22 pregnancies, "possibly diagnostic" in 7/22, and "unlikely diagnostic" in 3/22. In total, 19 of 191 NIHF cases diagnosed by prenatal exome were attributed to PIEZO1. Among likely diagnosed cases, the disease mode was AR in eight and AD in four. PIEZO1 variants causing AR NIHF were characterized by loss of function and isolated NIHF phenotype. PIEZO1 variants causing AD NIHF were characterized by gain of function in red blood cells, scarcity in databases, and sporadic inheritance. Missense variants associated with NIHF were clustered in three domains: transmembrane helical unit 4 (THU4), THU5, and the Cap. CONCLUSION PIEZO1 variants were reported in 10% of NIHF cases diagnosed by prenatal exome, making PIEZO1 the most common single gene reported in NIHF.
Collapse
Affiliation(s)
- Casey J Brewer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mona M Makhamreh
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York, USA
| | - Kavya Shivashankar
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rodney McLaren
- Division of Maternal-Fetal Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mariella Toro
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Seth I Berger
- Center for Genetic Medicine Research/Rare Disease Institute, Children's National Medical Center, Washington, District of Columbia, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Stewart GW, Gibson JS, Rees DC. The cation-leaky hereditary stomatocytosis syndromes: A tale of six proteins. Br J Haematol 2023; 203:509-522. [PMID: 37679660 DOI: 10.1111/bjh.19093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
This review concerns a series of dominantly inherited haemolytic anaemias in which the membrane of the erythrocyte 'leaks' the univalent cations, compromising the osmotic stability of the cell. The majority of the conditions are explained by mutations in one of six genes, coding for multispanning membrane proteins of different structure and function. These are: RhAG, coding for an ammonium carrier; SLC4A1, coding for the band 3 anion exchanger; PIEZO1, coding for a mechanosensitive cation channel; GLUT1, coding for a glucose transporter; KCNN4, coding for an internal-calcium-activated potassium channel; and ABCB6, coding for a porphyrin transporter. This review describes the five clinical syndromes associated with genetic defects in these genes and their variable genotype/phenotype relationships.
Collapse
Affiliation(s)
- Gordon W Stewart
- Division of Medicine, Faculty of Medical Sciences, University College London, London, UK
| | - John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David C Rees
- Haematological Medicine, Kings College London, London, UK
| |
Collapse
|
4
|
Hatem A, Poussereau G, Gachenot M, Pérès L, Bouyer G, Egée S. Dual action of Dooku1 on PIEZO1 channel in human red blood cells. Front Physiol 2023; 14:1222983. [PMID: 37492641 PMCID: PMC10365639 DOI: 10.3389/fphys.2023.1222983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
PIEZO1 is a mechanosensitive non-selective cation channel, present in many cell types including Red Blood Cells (RBCs). Together with the Gárdos channel, PIEZO1 forms in RBCs a tandem that participates in the rapid adjustment of the cell volume. The pharmacology allowing functional studies of the roles of PIEZO1 has only recently been developed, with Yoda1 as a widely used PIEZO1 agonist. In 2018, Yoda1 analogues were developed, as a step towards an improved understanding of PIEZO1 roles and functions. Among these, Dooku1 was the most promising antagonist of Yoda1-induced effects, without having any ability to activate PIEZO1 channels. Since then, Dooku1 has been used in various cell types to antagonize Yoda1 effects. In the present study using RBCs, Dooku1 shows an apparent IC50 on Yoda1 effects of 90.7 µM, one order of magnitude above the previously reported data on other cell types. Unexpectedly, it was able, by itself, to produce entry of calcium sufficient to trigger Gárdos channel activation. Moreover, Dooku1 evoked a rise in intracellular sodium concentrations, suggesting that it targets a non-selective cation channel. Dooku1 effects were abolished upon using GsMTx4, a known mechanosensitive channel blocker, indicating that Dooku1 likely targets PIEZO1. Our observations lead to the conclusion that Dooku1 behaves as a PIEZO1 agonist in the RBC membrane, similarly to Yoda1 but with a lower potency. Taken together, these results show that the pharmacology of PIEZO1 in RBCs must be interpreted with care especially due to the unique characteristics of RBC membrane and associated cytoskeleton.
Collapse
Affiliation(s)
- Aline Hatem
- Sorbonne Université, CNRS, UMR8227 LBI2M, Station Biologique de Roscoff, Roscoff, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Gwendal Poussereau
- Sorbonne Université, CNRS, UMR8227 LBI2M, Station Biologique de Roscoff, Roscoff, France
| | - Martin Gachenot
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Laurent Pérès
- Sorbonne Université, CNRS, UMR8227 LBI2M, Station Biologique de Roscoff, Roscoff, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Guillaume Bouyer
- Sorbonne Université, CNRS, UMR8227 LBI2M, Station Biologique de Roscoff, Roscoff, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Stéphane Egée
- Sorbonne Université, CNRS, UMR8227 LBI2M, Station Biologique de Roscoff, Roscoff, France
- Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
5
|
Rolland L, Torrente AG, Bourinet E, Maskini D, Drouard A, Chevalier P, Jopling C, Faucherre A. Prolonged Piezo1 Activation Induces Cardiac Arrhythmia. Int J Mol Sci 2023; 24:ijms24076720. [PMID: 37047693 PMCID: PMC10094979 DOI: 10.3390/ijms24076720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The rhythmical nature of the cardiovascular system constantly generates dynamic mechanical forces. At the centre of this system is the heart, which must detect these changes and adjust its performance accordingly. Mechanoelectric feedback provides a rapid mechanism for detecting even subtle changes in the mechanical environment and transducing these signals into electrical responses, which can adjust a variety of cardiac parameters such as heart rate and contractility. However, pathological conditions can disrupt this intricate mechanosensory system and manifest as potentially life-threatening cardiac arrhythmias. Mechanosensitive ion channels are thought to be the main proponents of mechanoelectric feedback as they provide a rapid response to mechanical stimulation and can directly affect cardiac electrical activity. Here, we demonstrate that the mechanosensitive ion channel PIEZO1 is expressed in zebrafish cardiomyocytes. Furthermore, chemically prolonging PIEZO1 activation in zebrafish results in cardiac arrhythmias. indicating that this ion channel plays an important role in mechanoelectric feedback. This also raises the possibility that PIEZO1 gain of function mutations could be linked to heritable cardiac arrhythmias in humans.
Collapse
Affiliation(s)
- Laura Rolland
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Angelo Giovanni Torrente
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Emmanuel Bourinet
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Dounia Maskini
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Aurélien Drouard
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Philippe Chevalier
- Neuromyogene Institut, Claude Bernard University, Lyon 1, 69008 Villeurbanne, France
- Service de Rythmologie, Hospices Civils de Lyon, 69500 Lyon, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Adèle Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| |
Collapse
|