1
|
Gollasch M, Kassmann M, Alves DT, Garscha U, Tsvetkov D. Metabolic Regulation of Vascular Smooth Muscle Potassium Channels by Perivascular Adipose Tissue. Arterioscler Thromb Vasc Biol 2025. [PMID: 40401374 DOI: 10.1161/atvbaha.125.321693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
This brief review describes recent advances in understanding metabolic control of vascular smooth muscle cells, highlighting the identification of KCNQ5 (KV7.5 subfamily of voltage-gated K+ channels) as a crucial component. KCNQ5 has been found to play a key role in enabling the convergence of input signals from the perivascular adipose tissue, which include numerous oxylipins. These findings are significant because they shed light on the mechanisms by which vascular smooth muscle cells regulate vascular tone and blood pressure. By focusing on the interaction between KCNQ5 and perivascular adipose tissue, research has uncovered a complex pathway that allows for the modulation of vascular responses through a variety of lipid-derived signaling molecules. This discovery not only provides deeper insight into the cellular processes affecting vascular function but also opens up potential new avenues for therapeutic interventions in vascular diseases. The identification of KCNQ5 as a pivotal mediator in these processes is a critical step forward in cardiovascular research, offering new perspectives on how vascular health can be maintained and how various diseases might be targeted more effectively.
Collapse
Affiliation(s)
- Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (M.G., M.K., D.T.A., D.T.)
| | - Mario Kassmann
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (M.G., M.K., D.T.A., D.T.)
| | - Daniele Teixeira Alves
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (M.G., M.K., D.T.A., D.T.)
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Greifswald University, Germany (U.G.)
| | - Dmitry Tsvetkov
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (M.G., M.K., D.T.A., D.T.)
| |
Collapse
|
2
|
Wang Y, Wang X, Chen Y, Zhang Y, Zhen X, Tao S, Dou J, Li P, Jiang G. Perivascular fat tissue and vascular aging: A sword and a shield. Pharmacol Res 2024; 203:107140. [PMID: 38513826 DOI: 10.1016/j.phrs.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
The understanding of the function of perivascular adipose tissue (PVAT) in vascular aging has significantly changed due to the increasing amount of information regarding its biology. Adipose tissue surrounding blood vessels is increasingly recognized as a key regulator of vascular disorders. It has significant endocrine and paracrine effects on the vasculature and is mediated by the production of a variety of bioactive chemicals. It also participates in a number of pathological regulatory processes, including oxidative stress, immunological inflammation, lipid metabolism, vasoconstriction, and dilation. Mechanisms of homeostasis and interactions between cells at the local level tightly regulate the function and secretory repertoire of PVAT, which can become dysregulated during vascular aging. The PVAT secretion group changes from being reducing inflammation and lowering cholesterol to increasing inflammation and increasing cholesterol in response to systemic or local inflammation and insulin resistance. In addition, the interaction between the PVAT and the vasculature is reciprocal, and the biological processes of PVAT are directly influenced by the pertinent indicators of vascular aging. The architectural and biological traits of PVAT, the molecular mechanism of crosstalk between PVAT and vascular aging, and the clinical correlation of vascular age-related disorders are all summarized in this review. In addition, this paper aims to elucidate and evaluate the potential benefits of therapeutically targeting PVAT in the context of mitigating vascular aging. Furthermore, it will discuss the latest advancements in technology used for targeting PVAT.
Collapse
Affiliation(s)
- Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xianmin Wang
- Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Xinjiang 830000, China
| | - Yang Chen
- School of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang 830011, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xianjie Zhen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Siyu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinfang Dou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Li
- Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Xinjiang 830000, China
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang 830011, China.
| |
Collapse
|
3
|
Tsvetkov D, Schleifenbaum J, Wang Y, Kassmann M, Polovitskaya MM, Ali M, Schütze S, Rothe M, Luft FC, Jentsch TJ, Gollasch M. KCNQ5 Controls Perivascular Adipose Tissue-Mediated Vasodilation. Hypertension 2024; 81:561-571. [PMID: 38354270 DOI: 10.1161/hypertensionaha.123.21834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND Small arteries exhibit resting tone, a partially contracted state that maintains arterial blood pressure. In arterial smooth muscle cells, potassium channels control contraction and relaxation. Perivascular adipose tissue (PVAT) has been shown to exert anticontractile effects on the blood vessels. However, the mechanisms by which PVAT signals small arteries, and their relevance remain largely unknown. We aimed to uncover key molecular components in adipose-vascular coupling. METHODS A wide spectrum of genetic mouse models targeting Kcnq3, Kcnq4, and Kcnq5 genes (Kcnq3-/-, Kcnq4-/-, Kcnq5-/-, Kcnq5dn/dn, Kcnq4-/-/Kcnq5dn/dn, and Kcnq4-/-/Kcnq5-/-), telemetry blood pressure measurements, targeted lipidomics, RNA-Seq profiling, wire-myography, patch-clamp, and sharp-electrode membrane potential measurements was used. RESULTS We show that PVAT causes smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels to hyperpolarize the membrane potential. This effect relaxes small arteries and regulates blood pressure. Oxygenation of polyunsaturated fats generates oxylipins, a superclass of lipid mediators. We identified numerous oxylipins released by PVAT, which potentiate vasodilatory action in small arteries by opening smooth muscle cell KV7.5 family of voltage-gated potassium (K+) channels. CONCLUSIONS Our results reveal a key molecular function of the KV7.5 family of voltage-gated potassium (K+) channels in the adipose-vascular coupling, translating PVAT signals, particularly oxylipins, to the central physiological function of vasoregulation. This novel pathway opens new therapeutic perspectives.
Collapse
Affiliation(s)
- Dmitry Tsvetkov
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (D.T., M.K., M.A., M.G.)
| | - Johanna Schleifenbaum
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany (J.S.)
| | - Yibin Wang
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany (Y.W., F.C.L.)
| | - Mario Kassmann
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (D.T., M.K., M.A., M.G.)
| | - Maya M Polovitskaya
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (M.M.P., S.S., T.J.J.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (M.M.P., S.S., T.J.J.)
| | - Mohamed Ali
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (D.T., M.K., M.A., M.G.)
| | - Sebastian Schütze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (M.M.P., S.S., T.J.J.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (M.M.P., S.S., T.J.J.)
| | | | - Friedrich C Luft
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany (Y.W., F.C.L.)
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany (M.M.P., S.S., T.J.J.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (M.M.P., S.S., T.J.J.)
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany (T.J.J.)
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Germany (D.T., M.K., M.A., M.G.)
| |
Collapse
|
4
|
AlZaim I, de Rooij LPMH, Sheikh BN, Börgeson E, Kalucka J. The evolving functions of the vasculature in regulating adipose tissue biology in health and obesity. Nat Rev Endocrinol 2023; 19:691-707. [PMID: 37749386 DOI: 10.1038/s41574-023-00893-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Adipose tissue is an endocrine organ and a crucial regulator of energy storage and systemic metabolic homeostasis. Additionally, adipose tissue is a pivotal regulator of cardiovascular health and disease, mediated in part by the endocrine and paracrine secretion of several bioactive products, such as adipokines. Adipose vasculature has an instrumental role in the modulation of adipose tissue expansion, homeostasis and metabolism. The role of the adipose vasculature has been extensively explored in the context of obesity, which is recognized as a global health problem. Obesity-induced accumulation of fat, in combination with vascular rarefaction, promotes adipocyte dysfunction and induces oxidative stress, hypoxia and inflammation. It is now recognized that obesity-associated endothelial dysfunction often precedes the development of cardiovascular diseases. Investigations have revealed heterogeneity within the vascular niche and dynamic reciprocity between vascular and adipose cells, which can become dysregulated in obesity. Here we provide a comprehensive overview of the evolving functions of the vasculature in regulating adipose tissue biology in health and obesity.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Laura P M H de Rooij
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Emma Börgeson
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
5
|
Cheng CK, Ding H, Jiang M, Yin H, Gollasch M, Huang Y. Perivascular adipose tissue: Fine-tuner of vascular redox status and inflammation. Redox Biol 2023; 62:102683. [PMID: 36958248 PMCID: PMC10038789 DOI: 10.1016/j.redox.2023.102683] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Perivascular adipose tissue (PVAT) refers to the aggregate of adipose tissue surrounding the vasculature, exhibiting the phenotypes of white, beige and brown adipocytes. PVAT has emerged as an active modulator of vascular homeostasis and pathogenesis of cardiovascular diseases in addition to its structural role to provide mechanical support to blood vessels. More specifically, PVAT is closely involved in the regulation of reactive oxygen species (ROS) homeostasis and inflammation along the vascular tree, through the tight interaction between PVAT and cellular components of the vascular wall. Furthermore, the phenotype-genotype of PVAT at different regions of vasculature varies corresponding to different cardiovascular risks. During ageing and obesity, the cellular proportions and signaling pathways of PVAT vary in favor of cardiovascular pathogenesis by promoting ROS generation and inflammation. Physiological means and drugs that alter PVAT mass, components and signaling may provide new therapeutic insights in the treatment of cardiovascular diseases. In this review, we aim to provide an updated understanding towards PVAT in the context of redox regulation, and to highlight the therapeutic potential of targeting PVAT against cardiovascular complications.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| | - Huanyu Ding
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Minchun Jiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huiyong Yin
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487, Greifswald, Germany
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Cui Y, Gollasch M, Kassmann M. Arterial myogenic response and aging. Ageing Res Rev 2023; 84:101813. [PMID: 36470339 DOI: 10.1016/j.arr.2022.101813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The arterial myogenic response is an inherent property of resistance arteries. Myogenic tone is crucial for maintaining a relatively constant blood flow in response to changes in intraluminal pressure and protects delicate organs from excessive blood flow. Although this fundamental physiological phenomenon has been extensively studied, the underlying molecular mechanisms are largely unknown. Recent studies identified a crucial role of mechano-activated angiotensin II type 1 receptors (AT1R) in this process. The development of myogenic response is affected by aging. In this review, we summarize recent progress made to understand the role of AT1R and other mechanosensors in the control of arterial myogenic response. We discuss age-related alterations in myogenic response and possible underlying mechanisms and implications for healthy aging.
Collapse
Affiliation(s)
- Yingqiu Cui
- Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125 Berlin, Germany
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Mario Kassmann
- Department of Internal Medicine and Geriatrics, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany.
| |
Collapse
|