1
|
Cho W, Lim DS, Gwon HJ, Abd El-Aty AM, Jeong JH, Jung TW. Valdecoxib Ameliorates Apoptosis and Ferroptosis in Tenocytes via the SIRT6/NRF2-Mediated Suppression of Oxidative Stress. Arch Med Res 2025; 56:103231. [PMID: 40311381 DOI: 10.1016/j.arcmed.2025.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/12/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND AND AIMS Valdecoxib (VAL), a nonsteroidal anti-inflammatory drug (NSAID), is widely used in the treatment of osteoarthritis and rheumatoid arthritis. In addition to its anti-inflammatory properties, VAL has been shown to improve skeletal muscle insulin resistance and attenuate hepatic steatosis in obese individuals. However, its potential effects on oxidative stress injury in tenocytes remain unclear. This study aims to explore novel functions of VAL by investigating its impact on cell death in oxidative stress-exposed tenocytes and elucidating the underlying molecular mechanisms, with a focus on its therapeutic potential for the treatment of tendinopathy. METHODS Apoptosis was assessed using cell viability assays, caspase-3 activity measurements, and TUNEL staining. Hydrogen peroxide (H₂O₂) and malondialdehyde (MDA) levels in tenocytes were quantified using appropriate assay kits, while reactive oxygen species (ROS) were detected by DCFDA staining. Tenocyte migration was evaluated using a scratch assay, and protein expression levels were analyzed by Western blotting. RESULTS AND CONCLUSION In the present study, we found that VAL treatment suppressed apoptosis and ferroptosis and normalized the expression of extracellular matrix (ECM) degradation markers, and enhanced cell migration in H2O2-treated tenocytes. VAL treatment increased the expression of SIRT6 and NRF2 and the activities of antioxidant enzymes. SIRT6-targeted siRNA abrogated the effects of VAL on tenocytes treated with H2O2. It also reduced VAL-induced NRF2 expression and antioxidant enzyme activities. These results suggest that VAL ameliorates oxidative stress induced tenocyte dysfunction through SIRT6/NRF2-mediated signaling. Therefore, this study highlights a potential therapeutic strategy for the treatment of overuse-induced tendinopathy.
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Yan H, Yin Y, Zhou Y, Li Z, Li Y, Ren L, Wen J, Wang W. Regulation of cardiovascular diseases by histone deacetylases and NADPH oxidases. Redox Biol 2024; 77:103379. [PMID: 39378612 PMCID: PMC11491726 DOI: 10.1016/j.redox.2024.103379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Histone deacetylases (HDACs) play critical roles in cardiovascular diseases (CVDs). In addition, reactive oxygen species (ROS) produced by NADPH oxidases (NOXs) exert damaging effects due to oxidative stress on heart and blood vessels. Although NOX-dependent ROS production is implicated in pathogenesis, the relationship between HDACs and NOXs in CVDs remains to be elucidated. Here, we present an overview of the regulatory effects and interconnected signaling pathways of HDACs and NOXs in CVDs. Improved insights into these relationships will facilitate the discovery of novel therapeutic agents that target HDACs, oxidase stress pathways, and the interactions between these systems which may be highly effective in the prevention and treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Hui Yan
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yidan Yin
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yichen Zhou
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zhanghang Li
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuxing Li
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lingxuan Ren
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jiazheng Wen
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Weirong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
3
|
Mao S, Song C, Huang H, Nie Y, Ding K, Cui J, Tian J, Tang H. Role of transcriptional cofactors in cardiovascular diseases. Biochem Biophys Res Commun 2024; 706:149757. [PMID: 38490050 DOI: 10.1016/j.bbrc.2024.149757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Cardiovascular disease is a main cause of mortality in the world and the highest incidence of all diseases. However, the mechanism of the pathogenesis of cardiovascular disease is still unclear, and we need to continue to explore its mechanism of action. The occurrence and development of cardiovascular disease is significantly associated with genetic abnormalities, and gene expression is affected by transcriptional regulation. In this complex process, the protein-protein interaction promotes the RNA polymerase II to the initiation site. And in this process of transcriptional regulation, transcriptional cofactors are responsible for passing cues from enhancers to promoters and promoting the binding of RNA polymerases to promoters, so transcription cofactors playing a key role in gene expression regulation. There is growing evidence that transcriptional cofactors play a critical role in cardiovascular disease. Transcriptional cofactors can promote or inhibit transcription by affecting the function of transcription factors. It can affect the initiation and elongation process of transcription by forming complexes with transcription factors, which are important for the stabilization of DNA rings. It can also act as a protein that interacts with other proteins to affect the expression of other genes. Therefore, the aim of this overview is to summarize the effect of some transcriptional cofactors such as BRD4, EP300, MED1, EZH2, YAP, SIRT6 in cardiovascular disease and to provide a promising therapeutic strategy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Shuqing Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Kai Ding
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jian Cui
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Beltran-Ornelas JH, Silva-Velasco DL, Tapia-Martínez JA, Sánchez-López A, Cano-Europa E, Huerta de la Cruz S, Centurión D. Sodium Hydrosulfide Reverts Chronic Stress-Induced Cardiovascular Alterations by Reducing Oxidative Stress. J Cardiovasc Pharmacol 2024; 83:317-329. [PMID: 38207007 DOI: 10.1097/fjc.0000000000001538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024]
Abstract
ABSTRACT Chronic stress induces a group of unrecognized cardiovascular impairments, including elevated hemodynamic variables and vascular dysfunction. Moreover, hydrogen sulfide (H 2 S), a gasotransmitter that regulates the cardiovascular system decreases under chronic stress. Thus, this study assessed the impact of sodium hydrosulfide (NaHS) (H 2 S donor) on chronic restraint stress (CRS)-induced cardiovascular changes. For that purpose, male Wistar rats were restrained for 2 hours a day in a transparent acrylic tube over 8 weeks. Then, body weight, relative adrenal gland weight, serum corticosterone, H 2 S-synthesizing enzymes, endothelial nitric oxide synthetize expression, reactive oxygen species levels, lipid peroxidation, and reduced glutathione-to-oxidized glutathione (GSH 2 :GSSG) ratio were determined in the thoracic aorta. The hemodynamic variables were measured in vivo by the plethysmograph method. The vascular function was evaluated in vitro as vasorelaxant responses induced by carbachol or sodium nitroprusside, and norepinephrine (NE)-mediated vasocontractile responses in the thoracic aorta. CRS increased (1) relative adrenal gland weight; (2) hemodynamic variables; (3) vasoconstrictor responses induced by NE, (4) reactive oxygen species levels, and (5) lipid peroxidation in the thoracic aorta. In addition, CRS decreased (1) body weight; (2) vasorelaxant responses induced by carbachol; (3) GSH content, and (4) GSH 2 :GSSG ratio. Notably, NaHS administration (5.6 mg/kg) restored hemodynamic variables and lipid peroxidation and attenuated the vasoconstrictor responses induced by NE in the thoracic aorta. In addition, NaHS treatment increased relative adrenal gland weight and the GSH 2 :GSSG ratio. Taken together, our results demonstrate that NaHS alleviates CRS-induced hypertension by reducing oxidative stress and restoring vascular function in the thoracic aorta.
Collapse
Affiliation(s)
| | | | | | | | - Edgar Cano-Europa
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México ; and
| |
Collapse
|
5
|
van der Linden J, Trap L, Scherer CV, Roks AJM, Danser AHJ, van der Pluijm I, Cheng C. Model Systems to Study the Mechanism of Vascular Aging. Int J Mol Sci 2023; 24:15379. [PMID: 37895059 PMCID: PMC10607365 DOI: 10.3390/ijms242015379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death globally. Within cardiovascular aging, arterial aging holds significant importance, as it involves structural and functional alterations in arteries that contribute substantially to the overall decline in cardiovascular health during the aging process. As arteries age, their ability to respond to stress and injury diminishes, while their luminal diameter increases. Moreover, they experience intimal and medial thickening, endothelial dysfunction, loss of vascular smooth muscle cells, cellular senescence, extracellular matrix remodeling, and deposition of collagen and calcium. This aging process also leads to overall arterial stiffening and cellular remodeling. The process of genomic instability plays a vital role in accelerating vascular aging. Progeria syndromes, rare genetic disorders causing premature aging, exemplify the impact of genomic instability. Throughout life, our DNA faces constant challenges from environmental radiation, chemicals, and endogenous metabolic products, leading to DNA damage and genome instability as we age. The accumulation of unrepaired damages over time manifests as an aging phenotype. To study vascular aging, various models are available, ranging from in vivo mouse studies to cell culture options, and there are also microfluidic in vitro model systems known as vessels-on-a-chip. Together, these models offer valuable insights into the aging process of blood vessels.
Collapse
Affiliation(s)
- Janette van der Linden
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Lianne Trap
- Department of Pulmonary Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Caroline V. Scherer
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Anton J. M. Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Cancer Genomics Center Netherlands, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
6
|
Suvakov S, Kattah AG, Gojkovic T, Enninga EAL, Pruett J, Jayachandran M, Sousa C, Santos J, Abou Hassan C, Gonzales-Suarez M, Garovic VD. Impact of Aging and Cellular Senescence in the Pathophysiology of Preeclampsia. Compr Physiol 2023; 13:5077-5114. [PMID: 37770190 DOI: 10.1002/cphy.c230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The incidence of hypertensive disorders of pregnancy is increasing, which may be due to several factors, including an increased age at pregnancy and more comorbid health conditions during reproductive years. Preeclampsia, the most severe hypertensive disorder of pregnancy, has been associated with an increased risk of future disease, including cardiovascular and kidney diseases. Cellular senescence, the process of cell cycle arrest in response to many physiologic and maladaptive stimuli, may play an important role in the pathogenesis of preeclampsia and provide a mechanistic link to future disease. In this article, we will discuss the pathophysiology of preeclampsia, the many mechanisms of cellular senescence, evidence for the involvement of senescence in the development of preeclampsia, as well as evidence that cellular senescence may link preeclampsia to the risk of future disease. Lastly, we will explore how a better understanding of the role of cellular senescence in preeclampsia may lead to therapeutic trials. © 2023 American Physiological Society. Compr Physiol 13:5077-5114, 2023.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamara Gojkovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A L Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jacob Pruett
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ciria Sousa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Yi X, Wang H, Yang Y, Wang H, Zhang H, Guo S, Chen J, Du J, Tian Y, Ma J, Zhang B, Wu L, Shi Q, Gao T, Guo W, Li C. SIRT7 orchestrates melanoma progression by simultaneously promoting cell survival and immune evasion via UPR activation. Signal Transduct Target Ther 2023; 8:107. [PMID: 36918544 PMCID: PMC10015075 DOI: 10.1038/s41392-023-01314-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023] Open
Abstract
Melanoma is the most lethal type of skin cancer, originating from the malignant transformation of melanocyte. While the development of targeted therapy and immunotherapy has gained revolutionary advances in potentiating the therapeutic effect, the prognosis of patients with melanoma is still suboptimal. During tumor progression, melanoma frequently encounters stress from both endogenous and exogenous sources in tumor microenvironment. SIRT7 is a nuclear-localized deacetylase of which the activity is highly dependent on intracellular nicotinamide adenine dinucleotide (NAD+), with versatile biological functions in maintaining cell homeostasis. Nevertheless, whether SIRT7 regulates tumor cell biology and tumor immunology in melanoma under stressful tumor microenvironment remains elusive. Herein, we reported that SIRT7 orchestrates melanoma progression by simultaneously promoting tumor cell survival and immune evasion via the activation of unfolded protein response. We first identified that SIRT7 expression was the most significantly increased one in sirtuins family upon stress. Then, we proved that the deficiency of SIRT7 potentiated tumor cell death under stress in vitro and suppressed melanoma growth in vivo. Mechanistically, SIRT7 selectively activated the IRE1α-XBP1 axis to potentiate the pro-survival ERK signal pathway and the secretion of tumor-promoting cytokines. SIRT7 directly de-acetylated SMAD4 to antagonize the TGF-β-SMAD4 signal, which relieved the transcriptional repression on IRE1α and induced the activation of the IRE1α-XBP1 axis. Moreover, SIRT7 up-regulation eradicated anti-tumor immunity by promoting PD-L1 expression via the IRE1α-XBP1 axis. Additionally, the synergized therapeutic effect of SIRT7 suppression and anti-PD-1 immune checkpoint blockade was also investigated. Taken together, SIRT7 can be employed as a promising target to restrain tumor growth and increase the effect of melanoma immunotherapy.
Collapse
Affiliation(s)
- Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Juan Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Lili Wu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
8
|
Antonelli A, Scarpa ES, Bruzzone S, Astigiano C, Piacente F, Bruschi M, Fraternale A, Di Buduo CA, Balduini A, Magnani M. Anoxia Rapidly Induces Changes in Expression of a Large and Diverse Set of Genes in Endothelial Cells. Int J Mol Sci 2023; 24:ijms24065157. [PMID: 36982232 PMCID: PMC10049254 DOI: 10.3390/ijms24065157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Sinusoidal endothelial cells are the predominant vascular surface of the bone marrow and constitute the functional hematopoietic niche where hematopoietic stem and progenitor cells receive cues for self-renewal, survival, and differentiation. In the bone marrow hematopoietic niche, the oxygen tension is usually very low, and this condition affects stem and progenitor cell proliferation and differentiation and other important functions of this region. Here, we have investigated in vitro the response of endothelial cells to a marked decrease in O2 partial pressure to understand how the basal gene expression of some relevant biological factors (i.e., chemokines and interleukins) that are fundamental for the intercellular communication could change in anoxic conditions. Interestingly, mRNA levels of CXCL3, CXCL5, and IL-34 genes are upregulated after anoxia exposure but become downmodulated by sirtuin 6 (SIRT6) overexpression. Indeed, the expression levels of some other genes (such as Leukemia Inhibitory Factor (LIF)) that were not significantly affected by 8 h anoxia exposure become upregulated in the presence of SIRT6. Therefore, SIRT6 mediates also the endothelial cellular response through the modulation of selected genes in an extreme hypoxic condition.
Collapse
Affiliation(s)
- Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | | | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Cecilia Astigiano
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University in Boston, Boston, MA 02111, USA
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| |
Collapse
|
9
|
Vijakumaran U, Shanmugam J, Heng JW, Azman SS, Yazid MD, Haizum Abdullah NA, Sulaiman N. Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review. Molecules 2023; 28:molecules28041861. [PMID: 36838850 PMCID: PMC9966213 DOI: 10.3390/molecules28041861] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Pharmacologists have been emphasizing and applying plant and herbal-based treatments in vascular diseases for decades now. Olives, for example, are a traditional symbol of the Mediterranean diet. Hydroxytyrosol is an olive-derived compound known for its antioxidant and cardioprotective effects. Acknowledging the merit of antioxidants in maintaining endothelial function warrants the application of hydroxytyrosol in endothelial dysfunction salvage and recovery. Endothelial dysfunction (ED) is an impairment of endothelial cells that adversely affects vascular homeostasis. Disturbance in endothelial functioning is a known precursor for atherosclerosis and, subsequently, coronary and peripheral artery disease. However, the effects of hydroxytyrosol on endothelial functioning were not extensively studied, limiting its value either as a nutraceutical supplement or in clinical trials. The action of hydroxytyrosol in endothelial functioning at a cellular and molecular level is gathered and summarized in this review. The favorable effects of hydroxytyrosol in the improvement of endothelial functioning from in vitro and in vivo studies were scrutinized. We conclude that hydroxytyrosol is capable to counteract oxidative stress, inflammation, vascular aging, and arterial stiffness; thus, it is beneficial to preserve endothelial function both in vitro and in vivo. Although not specifically for endothelial dysfunction, hydroxytyrosol safety and efficacy had been demonstrated via in vivo and clinical trials for cardiovascular-related studies.
Collapse
|
10
|
Oh H, Cho W, Park SY, Abd El-Aty A, Jeong JH, Jung TW. Ginsenoside Rb3 ameliorates podocyte injury under hyperlipidemic conditions via PPARδ- or SIRT6-mediated suppression of inflammation and oxidative stress. J Ginseng Res 2022; 47:400-407. [DOI: 10.1016/j.jgr.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/29/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
|
11
|
Lingappa N, Mayrovitz HN. Role of Sirtuins in Diabetes and Age-Related Processes. Cureus 2022; 14:e28774. [PMID: 36225477 PMCID: PMC9531907 DOI: 10.7759/cureus.28774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
Abstract
The practice of intermittent fasting continues to grow as a widely practiced diet trend due to its feasibility and reported high success rate. By practicing intermittent fasting, levels of sirtuin proteins (SIRTs), also known as the longevity protein, rise in the body and bring numerous health benefits. Currently, seven SIRTs have been described in humans in different locations of the cell with a wide variety of corresponding functions including gene transcription, DNA repair, and protection against oxidative damage. SIRT activators, such as resveratrol found in red wine, are also commonly consumed to amplify the health benefits associated with protection against diabetes and age-related disease processes. The purpose of this review is to explore the interaction of intermittent fasting on SIRT levels and how the increase in these proteins impacts age-related disease processes. The understanding of SIRTs is continuously evolving as more interactions and SIRT-specific activators are being revealed. New discoveries are crucial for forming potential therapeutics that delay many common diseases and promote healthy living.
Collapse
|
12
|
Pan X, Pi C, Ruan X, Zheng H, Zhang D, Liu X. Mammalian Sirtuins and Their Relevance in Vascular Calcification. Front Pharmacol 2022; 13:907835. [PMID: 35677446 PMCID: PMC9168231 DOI: 10.3389/fphar.2022.907835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are a group of diseases with high morbidity and mortality that affect millions of people each year. Vascular calcification (VC) is an active process that involves the mineral deposition of calcium-phosphate complexes. VC is closely related to cardiovascular diseases, such as hypertension, heart failure, and calcific aortic stenosis, and is a type of ectopic calcification that occurs in the vessel walls. The sirtuins (silent mating-type information regulation 2; SIRTs), are a family of histone deacetylases whose function relies on nicotinamide adenine dinucleotide (NAD+). They have non-negligible functions in the regulation of energy metabolism, senescence, apoptosis, and other biological processes. Sirtuins have important effects on bone homeostasis and VC processes that share many similarities with bone formation. Sirtuins have been confirmed to deacetylate a variety of target proteins related to the occurrence and development of VC, thereby affecting the process of VC and providing new possibilities for the prevention and treatment of cardiovascular diseases. To facilitate the understanding of vascular calcification and accelerate the development of cardiovascular drugs, we reviewed and summarized recent research progress on the relationship between different types of sirtuins and VC.
Collapse
Affiliation(s)
- Xinyue Pan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hanhua Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| | - Xiaoheng Liu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| |
Collapse
|
13
|
Liu X, Wang C, Pang L, Pan L, Zhang Q. Combination of resolvin E1 and lipoxin A4 promotes the resolution of pulpitis by inhibiting NF-κB activation through upregulating sirtuin 7 in dental pulp fibroblasts. Cell Prolif 2022; 55:e13227. [PMID: 35411569 PMCID: PMC9136498 DOI: 10.1111/cpr.13227] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives To determine whether the combination of resolvin E1 (RvE1) and lipoxin A4 (LXA4) could promote resolution of pulpitis and to investigate the mechanism. Materials and Methods Preliminary screening was first conducted in four specialized pro‐resolving mediators (SPMs). Real‐time quantitative polymerase chain reaction, western blotting, enzyme‐linked immunosorbent assay and double‐immunofluorescence labelling were employed to assess the expression of RelA, SIRT1, SIRT6, SIRT7 and pro‐inflammatory factors. Dental pulp fibroblasts (DPFs) were transfected with siRNA to assess the biological role of SIRT7. A pulpitis model was utilized to evaluate the in vivo curative effect. Results Preliminary results showed that RvE1 and LXA4 reduced the expression of RelA more markedly than other two SPMs. Both RvE1 and LXA4 treatment downregulated nuclear factor kappa B (NF‐κB) activation and increased the expression of SIRT1, SIRT6 and SIRT7, more so in combination than alone. Double‐immunofluorescence labelling showed that SIRT7 co‐localized with p‐p65 and Ac‐p65 in the nucleus. Inhibiting ChemR23 and ALX reversed the expression of RelA mRNA, p‐p65 and Ac‐p65 proteins, pro‐inflammatory factors, SIRT1, SIRT6 and SIRT7. Silencing SIRT7 significantly increased p‐p65 and Ac‐p65 protein levels and decreased SIRT1 and SIRT6 expression. In vivo experiments showed that combined administration of RvE1 and LXA4 promoted pulpitis markedly to resolution. Conclusions Combination of RvE1 and LXA4 effectively inhibited NF‐κB activation by upregulating SIRT7 expression in DPFs, leading to reduced production of pro‐inflammatory factors and promotion of pulpitis resolution.
Collapse
Affiliation(s)
- Xiaochen Liu
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chunmeng Wang
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Liping Pang
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Liangliang Pan
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Qi Zhang
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|