1
|
Vukašinović EL, Popović ŽD, Ninkov J, Čelić TV, Uzelac I, Kojić D, Purać J. Management of inorganic elements by overwintering physiology of cold hardy larvae of European corn borer (Ostrinia nubilalis, Hbn.). J Comp Physiol B 2024; 194:145-154. [PMID: 38478065 DOI: 10.1007/s00360-024-01537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 12/06/2023] [Accepted: 01/19/2024] [Indexed: 05/07/2024]
Abstract
The European corn borer (Ostrinia nubilalis, Hbn.), enters diapause, a strategy characterized by arrest of development and reproduction, reduction of metabolic rate and the emergence of increased resistance to challenging seasonal conditions as low sub-zero winter temperatures. The aim of this study was to investigate the potential role of inorganic elements in the ecophysiology of O. nubilalis, analysing their content in the whole body, hemolymph and fat body, both metabolically active, non-diapausing and overwintering diapausing larvae by ICP-OES spectrometer following the US EPA method 200.7:2001. O nubilalis as many phytophagous lepidopteran species maintain a very low extracellular sodium concentration and has potassium as dominant cation in hemolymph of their larvae. Changes in hemolymph and the whole body sodium content occur already at the onset of diapause (when the mean environmental temperatures are still high above 0 ºC) and remain stable during the time course of diapause when larvae of this species cope with sub-zero temperatures, it seems that sodium content regulation is rather a part of diapausing program than the direct effect of exposure to low temperatures. Compared to non-diapausing O. nubilalis larvae, potassium levels are much higher in the whole body and fat body of diapausing larvae and substantially increase approaching the end of diapause. The concentration of Ca, Mg, P and S differed in the whole body, hemolymph and fat body between non-diapausing and diapausing larvae without a unique trend during diapause, except an increase in their contents at the end of diapause.
Collapse
Affiliation(s)
- Elvira L Vukašinović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
| | - Željko D Popović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Jordana Ninkov
- Institute of Field and Vegetable Crops, 21000, Novi Sad, Serbia
| | - Tatjana V Čelić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Iva Uzelac
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Danijela Kojić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Jelena Purać
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| |
Collapse
|
2
|
Sau AK, Dhillon MK, Tanwar AK. Diapause-induced shift in the content of major carbohydrates in Chilo partellus (Swinhoe). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:193-202. [PMID: 38149458 DOI: 10.1002/jez.2774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Although several aspects like diapause determining factors, population structure, reproductive physiology, and genetics of diapause have been investigated, there is no clarity on carbohydrate energetics during larval diapause in Chilo partellus (Swinhoe). Present studies revealed significant variation between the nondiapausing and diapausing C. partellus for total carbohydrates, glycogen, sorbitol, and trehalose contents in different body parts, life stages, and for body parts × life stages interaction. Total carbohydrate content started declining, while sorbitol and trehalose increased in all the body parts as the C. partellus larvae progressed from prediapausing to diapausing state. However, glycogen content spiked in all the body parts at prediapausing stage, which then declined during diapause. Among the body parts, total carbohydrate content was significantly greater in the hemolymph as compared to other body parts of both larvae and pupae of C. partellus. Glycogen content was significantly greater in the larval fat bodies and pupal hemolymph as compared to their other body parts. In diapausing larvae, sorbitol and trehalose were greater in the integument than in other body parts. Furthermore, there was spike in trehalose and decrease in sorbitol in all the body parts of pupae from diapausing than those from nondiapausing larvae. These findings suggest that the diapause alterate and/or fluctuate major carbohydrates in different body parts of both larvae and pupae of C. partellus. This information will be helpful in better understanding the diapause energetics and overwintering metabolic cryoprotection in insects.
Collapse
Affiliation(s)
- Ashok K Sau
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mukesh K Dhillon
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditya K Tanwar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Patil YN, Gnaiger E, Landry AP, Leno ZJ, Hand SC. OXPHOS capacity is diminished and the phosphorylation system inhibited during diapause in an extremophile, embryos of Artemia franciscana. J Exp Biol 2024; 227:jeb245828. [PMID: 38099471 DOI: 10.1242/jeb.245828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024]
Abstract
Diapause exhibited by embryos of Artemia franciscana is accompanied by severe arrest of respiration. A large fraction of this depression is attributable to downregulation of trehalose catabolism that ultimately restricts fuel to mitochondria. This study now extends knowledge on the mechanism by revealing metabolic depression is heightened by inhibitions within mitochondria. Compared with that in embryo lysates during post-diapause, oxidative phosphorylation (OXPHOS) capacity P is depressed during diapause when either NADH-linked substrates (pyruvate and malate) for electron transfer (electron transfer capacity, E) through respiratory Complex I or the Complex II substrate succinate are used. When pyruvate, malate and succinate were combined, respiratory inhibition by the phosphorylation system in diapause lysates was discovered as judged by P/E flux control ratios (two-way ANOVA; F1,24=38.78; P<0.0001). Inhibition was eliminated as the diapause extract was diluted (significant interaction term; F2,24=9.866; P=0.0007), consistent with the presence of a diffusible inhibitor. One candidate is long-chain acyl-CoA esters known to inhibit the adenine nucleotide translocator. Addition of oleoyl-CoA to post-diapause lysates markedly decreased the P/E ratio to 0.40±0.07 (mean±s.d.; P=0.002) compared with 0.79±0.11 without oleoyl-CoA. Oleoyl-CoA inhibits the phosphorylation system and may be responsible for the depressed P/E in lysates from diapause embryos. With isolated mitochondria, depression of P/E by oleoyl-CoA was fully reversed by addition of l-carnitine (control versus recovery with l-carnitine, P=0.338), which facilitates oleoyl-CoA transport into the matrix and elimination by β-oxidation. In conclusion, severe metabolic arrest during diapause promoted by restricting glycolytic carbon to mitochondria is reinforced by depression of OXPHOS capacity and the phosphorylation system.
Collapse
Affiliation(s)
- Yuvraj N Patil
- Department of Biological Sciences, Division of Cellular, Developmental and Integrative Biology, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Alexander P Landry
- Department of Biological Sciences, Division of Cellular, Developmental and Integrative Biology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zachary J Leno
- Department of Biological Sciences, Division of Cellular, Developmental and Integrative Biology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Steven C Hand
- Department of Biological Sciences, Division of Cellular, Developmental and Integrative Biology, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Tao YD, Liu Y, Wan XS, Xu J, Fu DY, Zhang JZ. High and Low Temperatures Differentially Affect Survival, Reproduction, and Gene Transcription in Male and Female Moths of Spodoptera frugiperda. INSECTS 2023; 14:958. [PMID: 38132631 PMCID: PMC10743771 DOI: 10.3390/insects14120958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
In this study, we found that both heat and cold stresses significantly affected the survival and reproduction of both sexes in Spodoptera frugiperda adults, with larvae showing relatively higher extreme temperature tolerance. Further transcriptomic analysis in adults found remarkable differences and similarities between sexes in terms of temperature stress responses. Metabolism-related processes were suppressed in heat stressed females, which did not occur to the same extend in males. Moreover, both heat and cold stress reduced immune activities in both sexes. Heat stress induced the upregulation of many heat shock proteins in both sexes, whereas the response to cold stress was insignificant. More cold tolerance-related genes, such as cuticle proteins, UDP-glucuronosyltransferase, and facilitated trehalose transporter Tret1, were found upregulated in males, whereas most of these genes were downregulated in females. Moreover, a large number of fatty acid-related genes, such as fatty acid synthases and desaturases, were differentially expressed under heat and cold stresses in both sexes. Heat stress in females induced the upregulation of a large number of zinc finger proteins and reproduction-related genes; whereas cold stress induced downregulation in genes linked to reproduction. In addition, TRPA1-like encoding genes (which have functions involved in detecting temperature changes) and sex peptide receptor-like genes were found to be differentially expressed in stressed moths. These results indicate sex-specific heat and cold stress responses and adaptive mechanisms and suggest sex-specific trade-offs between stress-resistant progresses and fundamental metabolic processes as well as between survival and reproduction.
Collapse
Affiliation(s)
- Yi-Dong Tao
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Yu Liu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Xiao-Shuang Wan
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Jin Xu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| | - Jun-Zhong Zhang
- Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China; (Y.-D.T.); (D.-Y.F.)
| |
Collapse
|
5
|
Kovac H, Käfer H, Petrocelli I, Amstrup AB, Stabentheiner A. The Impact of Climate on the Energetics of Overwintering Paper Wasp Gynes ( Polistes dominula and Polistes gallicus). INSECTS 2023; 14:849. [PMID: 37999050 PMCID: PMC10672273 DOI: 10.3390/insects14110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Gynes of paper wasps (Polistes sp.) spend the cold season in sheltered hibernacles. These hibernacles protect against predators and adverse weather conditions but offer only limited protection against low temperatures. During overwintering diapause, wasps live on the energy they store. We investigated the hibernacles' microclimate conditions of species from the Mediterranean (Italy, P. dominula, P. gallicus) and temperate (Austria, P. dominula) climates in order to describe the environmental conditions and calculate the energetic demand of overwintering according to standard metabolic rate functions. The temperatures at the hibernacles differed significantly between the Mediterranean and temperate habitats (average in Austria: 3.2 ± 5.71 °C, in Italy: 8.5 ± 5.29 °C). In both habitats, the hibernacle temperatures showed variance, but the mean hibernacle temperature corresponded closely to the meteorological climate data. Cumulative mass-specific energetic costs over the studied period were the lowest for the temperate P. dominula population compared with both Mediterranean species. The lower costs of the temperate species were a result of the lower hibernacle temperature and acclimation to lower environmental temperatures. Model calculations with an increased mean temperature of up to 3 °C due to climate change indicate a dramatic increase of up to 40% in additional costs.
Collapse
Affiliation(s)
- Helmut Kovac
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Helmut Käfer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Iacopo Petrocelli
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Astrid B. Amstrup
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Department of Biology—Genetics, Ecology and Evolution, 8000 Aarhus, Denmark
| | - Anton Stabentheiner
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
6
|
Pisco-Ortiz C, González-Almario A, Uribe-Gutiérrez L, Soto-Suárez M, Amaya-Gómez CV. Suppression of tomato wilt by cell-free supernatants of Acinetobacter baumannii isolates from wild cacao from the Colombian Amazon. World J Microbiol Biotechnol 2023; 39:297. [PMID: 37658991 PMCID: PMC10475004 DOI: 10.1007/s11274-023-03719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Tomato vascular wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is one of the most limiting diseases of this crop. The use of fungicides and varieties resistant to the pathogen has not provided adequate control of the disease. In this study, siderophore-producing bacteria isolated from wild cocoa trees from the Colombian Amazon were characterized to identify prominent strategies for plant protection. The isolates were taxonomically classified into five different genera. Eight of the fourteen were identified as bacteria of the Acinetobacter baumannii complex. Isolates CBIO024, CBIO086, CBIO117, CBIO123, and CBIO159 belonging to this complex showed the highest efficiency in siderophore synthesis, producing these molecules in a range of 91-129 µmol/L deferoxamine mesylate equivalents. A reduction in disease severity of up to 45% was obtained when plants were pretreated with CBIO117 siderophore-rich cell-free supernatant (SodSid). Regarding the mechanism of action that caused antagonistic activity against Fol, it was found that plants infected only with Fol and plants pretreated with SodSid CBIO117 and infected with Fol showed higher levels of PR1 and ERF1 gene expression than control plants. In contrast, MYC2 gene expression was not induced by the SodSid CBIO117 application. However, it was upregulated in plants infected with Fol and plants pretreated with SodSid CBIO117 and infected with the pathogen. In addition to the disease suppression exerted by SodSid CBIO117, the results suggest that the mechanism underlying this effect is related to an induction of systemic defense through the salicylic acid, ethylene, and priming defense via the jasmonic acid pathway.
Collapse
Affiliation(s)
- Carolina Pisco-Ortiz
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Villavicencio, Meta, Colombia
| | | | - Liz Uribe-Gutiérrez
- Centro de investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Mauricio Soto-Suárez
- Centro de investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Carol V Amaya-Gómez
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Villavicencio, Meta, Colombia.
| |
Collapse
|
7
|
Pintilie PL, Trotuș E, Tălmaciu N, Irimia LM, Herea M, Mocanu I, Amarghioalei RG, Popa LD, Tălmaciu M. European Corn Borer ( Ostrinia nubilalis Hbn.) Bioecology in Eastern Romania. INSECTS 2023; 14:738. [PMID: 37754706 PMCID: PMC10531676 DOI: 10.3390/insects14090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Between 2020 and 2021, we conducted research in eastern Romania to monitor the bioecology of the European corn borer (Ostrinia nubilalis Hbn.), an important pest of corn. The bioecology research established the pest stage duration (egg, larva, pupa, and moth), the flight curve, and the flight peak. The bioecological study occurred in the experimental corn field and a field cage. According to our findings, the insect has one generation per year. The European corn borer hibernates as a mature larva in corn residues and continues developing in the spring, when the weather warms. It pupates from May to July over 37 days. Analyzing the data recorded during the winters of 2020 and 2021, we observed that the warming trend favored the high survival of hibernating larvae (60.7%). Due to the large number of mature larvae that had favorable conditions during the winter, there is an intense flight, starting in June and ending in September. When the first moth was caught in the light trap, the ∑(tn-10) °C (sum of degree days) was 245.6 °C. In 2020, the flight was recorded for 94 days. In 2021, the European corn borer flight lasted 104 days. The initial egg masses were detected when the total of ∑(tn-10) °C reached 351.5 °C. Moths laid the eggs for 25 days, mostly during peak flight in late June and early July. The first larvae hatched when ∑(tn-10) °C totaled 438.4 °C, and stages III-V were recorded in the harvested crop. Understanding the bioecology of the European corn borer can offer valuable insights into managing population levels and identifying optimal timing for addressing infestations in corn crops.
Collapse
Affiliation(s)
- Paula Lucelia Pintilie
- Agricultural Research and Development Station Secuieni–Neamț, Principala St, 371, Secuieni, 617415 Neamt, Romania; (P.L.P.); (R.G.A.); (L.D.P.)
| | - Elena Trotuș
- Agricultural Research and Development Station Secuieni–Neamț, Principala St, 371, Secuieni, 617415 Neamt, Romania; (P.L.P.); (R.G.A.); (L.D.P.)
| | - Nela Tălmaciu
- Department of Plant Protection, Faculty of Horticulture, University of Life Sciences, Mihail Sadoveanu Ally, no 3, 700490 Iași, Romania; (L.M.I.); (M.H.); (I.M.); (M.T.)
| | - Liviu Mihai Irimia
- Department of Plant Protection, Faculty of Horticulture, University of Life Sciences, Mihail Sadoveanu Ally, no 3, 700490 Iași, Romania; (L.M.I.); (M.H.); (I.M.); (M.T.)
| | - Monica Herea
- Department of Plant Protection, Faculty of Horticulture, University of Life Sciences, Mihail Sadoveanu Ally, no 3, 700490 Iași, Romania; (L.M.I.); (M.H.); (I.M.); (M.T.)
| | - Ionela Mocanu
- Department of Plant Protection, Faculty of Horticulture, University of Life Sciences, Mihail Sadoveanu Ally, no 3, 700490 Iași, Romania; (L.M.I.); (M.H.); (I.M.); (M.T.)
| | - Roxana Georgiana Amarghioalei
- Agricultural Research and Development Station Secuieni–Neamț, Principala St, 371, Secuieni, 617415 Neamt, Romania; (P.L.P.); (R.G.A.); (L.D.P.)
| | - Lorena Diana Popa
- Agricultural Research and Development Station Secuieni–Neamț, Principala St, 371, Secuieni, 617415 Neamt, Romania; (P.L.P.); (R.G.A.); (L.D.P.)
| | - Mihai Tălmaciu
- Department of Plant Protection, Faculty of Horticulture, University of Life Sciences, Mihail Sadoveanu Ally, no 3, 700490 Iași, Romania; (L.M.I.); (M.H.); (I.M.); (M.T.)
| |
Collapse
|
8
|
Wang N, Ji A, Masoudi A, Li S, Hu Y, Zhang Y, Yu Z, Wang H, Wang H, Liu J. Protein regulation mechanism of cold tolerance in Haemaphysalis longicornis. INSECT SCIENCE 2023; 30:725-740. [PMID: 36285346 DOI: 10.1111/1744-7917.13133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/03/2022] [Accepted: 09/28/2022] [Indexed: 06/15/2023]
Abstract
Ticks are external parasitic arthropods that can transmit a variety of pathogens by sucking blood. Low-temperature tolerance is essential for ticks to survive during the cold winter. Exploring the protein regulation mechanism of low-temperature tolerance of Haemaphysalis longicornis could help to explain how ticks survive in winter. In this study, the quantitative proteomics of several tissues of H. longicornis exposed to low temperature were studied by data independent acquisition technology. Totals of 3 699, 3 422, and 1 958 proteins were identified in the salivary gland, midgut, and ovary, respectively. The proteins involved in energy metabolism, cell signal transduction, protein synthesis and repair, and cytoskeleton synthesis changed under low-temperature stress. The comprehensive analysis of the protein regulation of multiple tissues of female ticks exposed to low temperature showed that maintaining cell homeostasis, maintaining cell viability, and enhancing cell tolerance were the most important means for ticks to maintain vital signs under low temperature. The expression of proteins involved in and regulating the above cell activities was the key to the survival of ticks under low temperatures. Through the analysis of a large amount of data, we found that the expression levels of arylamine N-acetyltransferase, inositol polyphosphate multikinase, and dual-specificity phosphatase were up-regulated under low temperature. We speculated that they might have important significance in low-temperature tolerance. Then, we performed RNA interference on the mRNA of these 3 proteins, and the results showed that the ability of female ticks to tolerate low temperatures decreased significantly.
Collapse
Affiliation(s)
- Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Aimeng Ji
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Abolfazl Masoudi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuang Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuhong Hu
- Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, China
| | - Yefei Zhang
- Hebei Xiaowutai Mountain National Nature Reserve Management Center, Zhangjiakou, Hebei Province, China
| | - Zhijun Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Han Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
9
|
Du H, He Y, Zhu J, Zhou H, Shao C, Yang J, Wan H. Danhong injection alleviates cerebral ischemia-reperfusion injury by inhibiting mitochondria-dependent apoptosis pathway and improving mitochondrial function in hyperlipidemia rats. Biomed Pharmacother 2023; 157:114075. [PMID: 36481401 DOI: 10.1016/j.biopha.2022.114075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cerebral ischemia threatens human health and life. Hyperlipidemia is a risk of cerebral ischemia. Danhong injection (DHI) is a traditional Chinese medical preparation for the treatment of cerebrovascular diseases. However, the effects of DHI on mitochondria-dependent apoptosis and mitochondrial function following cerebral ischemia in hyperlipidemia rats are not clear. In this study, SD rats were fed by high-fat diet for six weeks to establish the hyperlipidemia model, except for the sham and ischemia-reperfusion (I/R) groups. Hyperlipidemia rats were assigned into I/R + high-fat diet (HFD) group, DHI 1 mL/kg group, and DHI 2 mL/kg group. DHI was administrated to the drug group via caudal vein for seven consecutive days (once per day). Subsequently, rats underwent middle cerebral artery occlusion (MCAO) for 1 h and reperfusion for 24 h. The results showed that DHI significantly reduced cerebral infarction volume, ameliorated neurological function, improved pathological changes, and inhibited apoptosis. DHI could significantly restore the levels of mitochondrial respiratory chain complexes I-IV, increase the ATP content and COX activity, and decrease the level of OFR in the ischemic brain mitochondria of hyperlipidemia rats after I/R. DHI significantly regulated the levels of cytochrome c (Cyt c), Apaf1, Bax, Bcl-2, Caspase-3, and Caspase-9 in brain tissue, and improved mitochondrial dynamics (Mfn1, Mfn2, OPA1, Drp1, and Fis1). The results indicate that DHI could alleviate ischemic brain injury in hyperlipidemia rats, and the mechanism may be to improve mitochondrial function by restoring the mitochondrial respiratory chain and changing the protein balance of mitochondrial fusion and fission, and inhibiting mitochondria-dependent apoptosis.
Collapse
Affiliation(s)
- Haixia Du
- Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiaqi Zhu
- Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Chongyu Shao
- Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
10
|
Avramov M, Schád É, Révész Á, Turiák L, Uzelac I, Tantos Á, Drahos L, Popović ŽD. Identification of Intrinsically Disordered Proteins and Regions in a Non-Model Insect Species Ostrinia nubilalis (Hbn.). Biomolecules 2022; 12:biom12040592. [PMID: 35454181 PMCID: PMC9029825 DOI: 10.3390/biom12040592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/29/2022] Open
Abstract
Research in previous decades has shown that intrinsically disordered proteins (IDPs) and regions in proteins (IDRs) are as ubiquitous as highly ordered proteins. Despite this, research on IDPs and IDRs still has many gaps left to fill. Here, we present an approach that combines wet lab methods with bioinformatics tools to identify and analyze intrinsically disordered proteins in a non-model insect species that is cold-hardy. Due to their known resilience to the effects of extreme temperatures, these proteins likely play important roles in this insect's adaptive mechanisms to sub-zero temperatures. The approach involves IDP enrichment by sample heating and double-digestion of proteins, followed by peptide and protein identification. Next, proteins are bioinformatically analyzed for disorder content, presence of long disordered regions, amino acid composition, and processes they are involved in. Finally, IDP detection is validated with an in-house 2D PAGE. In total, 608 unique proteins were identified, with 39 being mostly disordered, 100 partially disordered, 95 nearly ordered, and 374 ordered. One-third contain at least one long disordered segment. Functional information was available for only 90 proteins with intrinsic disorders out of 312 characterized proteins. Around half of the 90 proteins are cytoskeletal elements or involved in translational processes.
Collapse
Affiliation(s)
- Miloš Avramov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (M.A.); (I.U.)
| | - Éva Schád
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (É.S.); (Á.T.)
| | - Ágnes Révész
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (Á.R.); (L.T.); (L.D.)
| | - Lilla Turiák
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (Á.R.); (L.T.); (L.D.)
| | - Iva Uzelac
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (M.A.); (I.U.)
| | - Ágnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (É.S.); (Á.T.)
| | - László Drahos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (Á.R.); (L.T.); (L.D.)
| | - Željko D. Popović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; (M.A.); (I.U.)
- Correspondence:
| |
Collapse
|