1
|
Liu S, Zhang X, Gong X, Yu J, Lin T, Xiang Q, Zeng X, Liu J. Molecular and pharmacological characterization of the dopamine receptors in the oriental fruit fly, Bactrocera dorsalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104312. [PMID: 40245998 DOI: 10.1016/j.ibmb.2025.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/21/2025] [Accepted: 04/12/2025] [Indexed: 04/19/2025]
Abstract
Dopamine (DA) is a critical molecule within the insect nervous system, known to regulate a myriad of physiological functions and instigate behavioral shifts in insects. It exerts its effects by interacting with specific dopamine receptors (DARs). In this study, three DARs cDNAs from Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) (BdDOP1, BdDOP2 and BdDOP3) were cloned using molecular biology techniques. These receptors exhibited high sequence identity with their orthologous DARs, and phylogenetic analyses also clustered these receptors within their respective receptor subtype. Additionally, the high expression levels of these DARs in the head suggest their prominent role in the central nervous system of B. dorsalis. To investigate the pharmacological properties of these receptors, expression vectors for BdDOP1, BdDOP2 and BdDOP3 were constructed and expressed in HEK-293T cells. Our results demonstrated that DA and synthetic agonists activated these receptors in a dose-dependent manner, and DA activation can be competitively inhibited by various antagonists, exhibiting distinct potencies for each dopamine receptor type. Among the tested antagonists, SCH-23390, methiothepin, and metoclopramide were identified as the most potent inhibitors of BdDOP1, BdDOP2 and BdDOP3, respectively. This study provides valuable insights into the molecular and pharmacological characteristics of DARs in B. dorsalis, offering a theoretical foundation for the development of novel behavioral modulators targeting these receptors. The findings also serve as a reference for the functional analyses of DARs in other insect species.
Collapse
Affiliation(s)
- Shiyan Liu
- State Key Laboratory of Green Pesticide/Guangdong Engineering Research Center for Insect Behavior Regulation/College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xuefeng Zhang
- State Key Laboratory of Green Pesticide/Guangdong Engineering Research Center for Insect Behavior Regulation/College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Gong
- State Key Laboratory of Green Pesticide/Guangdong Engineering Research Center for Insect Behavior Regulation/College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Jinxin Yu
- State Key Laboratory of Green Pesticide/Guangdong Engineering Research Center for Insect Behavior Regulation/College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Lin
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
| | - Qian Xiang
- State Key Laboratory of Green Pesticide/Guangdong Engineering Research Center for Insect Behavior Regulation/College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xinnian Zeng
- State Key Laboratory of Green Pesticide/Guangdong Engineering Research Center for Insect Behavior Regulation/College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiali Liu
- State Key Laboratory of Green Pesticide/Guangdong Engineering Research Center for Insect Behavior Regulation/College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Watanabe T, Onuma T, Nishimura M, Morigami A, Ono M, Sasaki K. Activation of mating-related behavior by serotonin in males of the Japanese yellow hornet Vespa simillima. JOURNAL OF INSECT PHYSIOLOGY 2025; 162:104796. [PMID: 40157638 DOI: 10.1016/j.jinsphys.2025.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The behavioral physiology of males in social wasps has received little attention, despite the importance of male behavior adapted to complex social environments. To explore the roles of brain biogenic amines in mating-related behavior in male Japanese yellow hornets (Vespa simillima), we first determined the development of mating-related behavior and age-related changes to biogenic amines in the brain. The activities of locomotion, flight, and mating in the males increased with day-age by 1 week after emergence. Testes size decreased within 1 week after adult emergence, suggesting that male sexual maturation may be complete with the development of mating-related behavior. Serotonin levels in the brain increased with age in parallel to the behavioral activities. Dopamine levels in the brain peaked at 2 days of age and then decreased with age, whereas octopamine levels in the brain decreased with age. Thus, serotonin was a candidate compound activating mating-related behavior in males. We then examined the effects of serotonin on the mating-related behavior of males using serotonin injections. Injections of serotonin significantly enhanced activities of locomotion, flight, and mating, depending on serotonin concentration. Those results suggested that serotonin activates mating-related behavior in male hornets.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Takafumi Onuma
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Masakazu Nishimura
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
| | - Ayaka Morigami
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Masato Ono
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan; Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan; Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan.
| |
Collapse
|
3
|
Chen Y, Yao X, Jiang Z, Xiao Z, Luo C, Zhong G, Yi X. OBP83b and OBP49a Involved in the Perception of Female-Derived Pheromones in Bactrocera dorsalis (Hendel). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17858-17867. [PMID: 39081139 DOI: 10.1021/acs.jafc.4c03530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In Bactrocera dorsalis, both males and females release chemical signals to attract mates. In our previous study, we identified ethyl laurate, ethyl myristate, and ethyl palmitate as potent female-derived pheromones that contribute to mate attraction. However, the mechanisms underlying the olfactory recognition remain unclear. In this study, we observed strong antennal and behavioral responses in male B. dorsalis to these female-derived pheromones, and further investigation revealed significant upregulation of OBP49a and OBP83b following exposure to these compounds. Through fluorescence competitive binding assays and RNA interference techniques, we demonstrated the crucial roles of OBP49a and OBP83b in detecting female-derived pheromones. Finally, molecular docking analysis identified key residues, including His134 in OBP83b and a lysine residue in OBP49a, which formed hydrogen bonds with female-derived pheromones, facilitating their binding. These findings not only advance our understanding of olfactory recognition of pheromones in B. dorsalis but also offer potential targets for developing olfaction-interfering techniques for pest control.
Collapse
Affiliation(s)
- Yaoyao Chen
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Yao
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhiyan Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Provincial Key Laboratory of Characteristic Traditional Chinese Medicine Resources Protection and Innovative Utilization, College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Ziwei Xiao
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Chang Luo
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- National Key Laboratory of Green Pesticide, Guangzhou 510642, China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Bessonova Y, Raman B. Serotonergic amplification of odor-evoked neural responses maps onto flexible behavioral outcomes. eLife 2024; 12:RP91890. [PMID: 39078877 PMCID: PMC11288630 DOI: 10.7554/elife.91890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Behavioral responses to many odorants are not fixed but are flexible, varying based on organismal needs. How such variations arise and the role of various neuromodulators in achieving flexible neural-to-behavioral mapping is not fully understood. In this study, we examined how serotonin modulates the neural and behavioral responses to odorants in locusts (Schistocerca americana). Our results indicated that serotonin can increase or decrease appetitive behavior in an odor-specific manner. On the other hand, in the antennal lobe, serotonergic modulation enhanced odor-evoked response strength but left the temporal features or the combinatorial response profiles unperturbed. This result suggests that serotonin allows for sensitive and robust recognition of odorants. Nevertheless, the uniform neural response amplification appeared to be at odds with the observed stimulus-specific behavioral modulation. We show that a simple linear model with neural ensembles segregated based on behavioral relevance is sufficient to explain the serotonin-mediated flexible mapping between neural and behavioral responses.
Collapse
Affiliation(s)
- Yelyzaveta Bessonova
- Department of Biomedical Engineering, Washington University in St. LouisSt. LouisUnited States
| | - Baranidharan Raman
- Department of Biomedical Engineering, Washington University in St. LouisSt. LouisUnited States
| |
Collapse
|
5
|
Xu L, Jiang HB, Yu JL, Wang JJ. Plasticity of the olfactory behaviors in Bactrocera dorsalis under various physiological states and environmental conditions. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101196. [PMID: 38555081 DOI: 10.1016/j.cois.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Insects rely heavily on their olfactory system for various behaviors, including foraging, mating, and oviposition. Numerous studies have demonstrated that insects can adjust their olfactory behaviors in response to different physiological states and environmental conditions. This flexibility allows them to perceive and process odorants according to different conditions. The Oriental fruit fly, Bactrocera dorsalis, is a highly destructive and invasive pest causing significant economic losses to fruit and vegetable crops worldwide. The olfactory behavior of B. dorsalis exhibits strong plasticity, resulting in its successful invasion. To enhance our understanding of B. dorsalis' olfactory behavior and explore potential strategies for behavior control, we have reviewed recent literature on its olfactory plasticity and potential molecular mechanisms.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jie-Ling Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Li XL, Li DD, Cai XY, Cheng DF, Lu YY. Reproductive behavior of fruit flies: courtship, mating, and oviposition. PEST MANAGEMENT SCIENCE 2024; 80:935-952. [PMID: 37794312 DOI: 10.1002/ps.7816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Many species of the Tephritidae family are invasive and cause huge damage to agriculture and horticulture, owing to their reproductive characteristics. In this review, we have summarized the existing studies on the reproductive behavior of Tephritidae, particularly those regarding the genes and external factors that are associated with courtship, mating, and oviposition. Furthermore, we outline the issues that still need to be addressed in fruit fly reproduction research. The review highlights the implications for understanding the reproductive behavior of fruit flies and discusses methods for their integrated management and biological control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Lian Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dou-Dou Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin-Yan Cai
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dai-Feng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|