1
|
Chen S, Hu H, Wu J, Dong M, Zhang Y, Zhu Q, Wang Z, Sun Y, Gao X. Activation of aryl hydrocarbon receptor ameliorates degranulation of LL-37 induced mast cells in rosacea through enhancing autophagy. Int Immunopharmacol 2025; 146:113910. [PMID: 39736238 DOI: 10.1016/j.intimp.2024.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Activation of the aryl hydrocarbon receptor (AhR) ameliorates LL-37-induced rosacea-like dermatitis in mice, whereas mast cells and cytokine overexpression are prominent features in rosacea skin. OBJECTIVE To evaluate the potential mechanisms of AhR activation on autophagy and degranulation of mast cells in rosacea. METHODS LL-37 treated mast cells were used to mimic rosacea. An AhR agonist (tapinarof) was applied to LL-37 induced mast cells. Furthermore, an autophagy agonist (RAPA) and an inhibitor (CQ) was added to investigate the mechanisms of autophagy. Western blot and RT-qPCR assessed cell degranulation (Cma1, Tpsab1) and cytokines (MMP9, TNF-α, and IL-6). Changes in cell morphology were observed under a microscope. Autophagy markers (LC3 and p62) were examined using Western blot and cellular immunofluorescence. RESULTS LL-37 upregulated the expressions of Cma1, Tpsab1, MMP9, TNF-α, and IL-6, which were then reduced by tapinarof treatment for 24 h. LC3B-I was converted to LC3B-II and p62 was reduced gradually with increasing concentration of tapinarof, indicating that autophagy was enhanced. RAPA enhanced the expression of LC3B-II on LL-37-induced mast cells, similar to tapinarof, while CQ partially inhibited the ability of tapinarof to induce autophagy in mast cells. Moreover, CQ reversed tapinarof's suppression of Cma1, Tpsab1, MMP9, TNF-α and IL-6 on LL-37 treated mast cells. CONCLUSION The present study showed that activation of AhR ameliorated degranulation of LL-37-induced mast cells in rosacea through enhancing autophagy, offering a new option for rosacea treatment.
Collapse
Affiliation(s)
- Shuyan Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Honghao Hu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Jinxuan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Miao Dong
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Ying Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Qiao Zhu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Zi Wang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Yan Sun
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China.
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Immunodermatology, Ministry of Education Key Laboratory of Immunodermatology, National Joint Engineering Research Center for Diagnosis and Treatment of Immunologic Skin Diseases, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Li H, Dong Y, Han C, Xia L, Zhang Y, Chen T, Wang H, Xu G. Suramin, an antiparasitic drug, stimulates adipocyte differentiation and promotes adipogenesis. Lipids Health Dis 2023; 22:222. [PMID: 38093311 PMCID: PMC10717495 DOI: 10.1186/s12944-023-01980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Previous studies demonstrated that mast cells with their degranulated component heparin are the major endogenous factors that stimulate preadipocyte differentiation and promote fascial adipogenesis, and this effect is related to the structure of heparin. Regarding the structural and physiological properties of the negatively charged polymers, hexasulfonated suramin, a centuries-old medicine that is still used for treating African trypanosomiasis and onchocerciasis, is assumed to be a heparin-related analog or heparinoid. This investigation aims to elucidate the influence of suramin on the adipogenesis. METHODS To assess the influence exerted by suramin on adipogenic differentiation of primary white adipocytes in rats, this exploration was conducted both in vitro and in vivo. Moreover, it was attempted to explore the role played by the sulfonic acid groups present in suramin in mediating this adipogenic process. RESULTS Suramin demonstrated a dose- and time-dependent propensity to stimulate the adipogenic differentiation of rat preadipocytes isolated from the superficial fascia tissue and from adult adipose tissue. This stimulation was concomitant with a notable upregulation in expression levels of pivotal adipogenic factors as the adipocyte differentiation process unfolded. Intraperitoneal injection of suramin into rats slightly increased adipogenesis in the superficial fascia and in the epididymal and inguinal fat depots. PPADS, NF023, and NF449 are suramin analogs respectively containing 2, 6, and 8 sulfonic acid groups, among which the last two moderately promoted lipid droplet formation and adipocyte differentiation. The number and position of sulfonate groups may be related to the adipogenic effect of suramin. CONCLUSIONS Suramin emerges as a noteworthy pharmaceutical agent with the unique capability to significantly induce adipocyte differentiation, thereby fostering adipogenesis.
Collapse
Affiliation(s)
- Hanxiao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Yingyue Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Chunmiao Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Lisha Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Tongsheng Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Physiology, Xiamen Medical College, 361023, Xiamen, China
| | - Huamin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China.
| |
Collapse
|