1
|
van Dijk K, Khair RM, Sukanen M, Cronin NJ, Finni T. Medial gastrocnemius muscle fascicle function during heel-rise after non-operative repair of Achilles tendon rupture. Clin Biomech (Bristol, Avon) 2023; 105:105977. [PMID: 37156191 DOI: 10.1016/j.clinbiomech.2023.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 03/23/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND To better understand muscle remodelling in dynamic conditions after an Achilles tendon rupture, this study examined the length of medial gastrocnemius muscle fascicles during a heel-rise at 6- and 12-months after non-operative ATR treatment. METHODS Participants (15 M, 3F) were diagnosed with acute Achilles tendon rupture. Medial gastrocnemius subtendon length, fascicle length and pennation angle were assessed in resting conditions, and fascicle shortening during bi- and unilateral heel-rises. FINDINGS Fascicle shortening was smaller on the injured side (mean difference [95% CI]: -9.7 mm [-14.7 to -4.7 mm]; -11.1 mm [-16.5 to -5.8 mm]) and increased from 6- to 12 months (4.5 mm [2.8-6.3 mm]; 3.2 mm [1.4-4.9 mm]) in bi- and unilateral heel-rise, respectively. The injured tendon was longer compared to contralateral limb (2.16 cm [0.54-3.79 cm]) and the length decreased over time (-0.78 cm [-1.28 to -0.29 cm]). Tendon length correlated with fascicle shortening in bilateral (r = -0.671, p = 0.002; r = -0.666, p = 0.003) and unilateral (r = -0.773, p ≤ 0.001; r = -0.616, p = 0.006) heel-rise, at 6- and 12-months, respectively. In the injured limb, the change over time in fascicle shortening correlated with change in subtendon length in unilateral heel-rise (r = 0.544, p = 0.02). INTERPRETATION This study showed that the lengths of the injured tendon and associated muscle can adapt throughout the first year after rupture when patients continue physiotherapy and physical exercises. For muscle, measures of resting length may not be very informative about adaptations, which manifest themselves during functional tasks such as unilateral heel-rise.
Collapse
Affiliation(s)
- Koen van Dijk
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, 40700 Jyväskylä, Jyväskylä, Finland
| | - Raad M Khair
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, 40700 Jyväskylä, Jyväskylä, Finland
| | - Maria Sukanen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, 40700 Jyväskylä, Jyväskylä, Finland
| | - Neil J Cronin
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, 40700 Jyväskylä, Jyväskylä, Finland; School of Sport & Exercise, University of Gloucestershire, Gloucestershire, UK
| | - Taija Finni
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, 40700 Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
2
|
Distal overactivation of gastrocnemius medialis in persistent plantarflexion weakness following Achilles tendon repair. J Biomech 2023; 148:111459. [PMID: 36738627 DOI: 10.1016/j.jbiomech.2023.111459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Structural alterations of the triceps surae and Achilles tendon (AT) can promote plantarflexion weakness one-year following an AT repair, influencing the activation strategies of the Gastrocnemius Medialis (GM) muscle. However, this is yet to be demonstrated. We aimed to determine whether patients with plantar flexion weakness one-year after AT repair show altered GM spatial activation. In this cross-sectional and case-control study, ten middle-aged men (age 34 ± 7 years old, and 12.9 ± 1.1 months post-surgery) with a high AT total rupture score who attended conventional physiotherapy for six months after surgery, and ten healthy control men (age 28 ± 9 years old), performed maximal and submaximal (40, 60 and 90%) voluntary isometric plantarflexion contractions on a dynamometer. The peak plantar flexor torque was determined by isokinetic dynamometry and the GM neuromuscular activation was measured with a linear surface-electromyography (EMG) array. Overall EMG activation (averaged channels) increased when the muscle contraction levels increased for both groups. EMG spatial analysis in AT repaired group showed an increased activation located distally at 85-99%, 75-97%, and 79-97% of the electrode array length for 40%, 60%, and 90% of the maximal voluntary isometric contractions, respectively. In conclusion, patients with persistent plantar flexion weakness after AT rupture showed higher distal overactivation in GM.
Collapse
|
3
|
Herssens N, Cowburn J, Albracht K, Braunstein B, Cazzola D, Colyer S, Minetti AE, Pavei G, Rittweger J, Weber T, Green DA. Movement in low gravity environments (MoLo) programme-The MoLo-L.O.O.P. study protocol. PLoS One 2022; 17:e0278051. [PMID: 36417480 PMCID: PMC9683620 DOI: 10.1371/journal.pone.0278051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Exposure to prolonged periods in microgravity is associated with deconditioning of the musculoskeletal system due to chronic changes in mechanical stimulation. Given astronauts will operate on the Lunar surface for extended periods of time, it is critical to quantify both external (e.g., ground reaction forces) and internal (e.g., joint reaction forces) loads of relevant movements performed during Lunar missions. Such knowledge is key to predict musculoskeletal deconditioning and determine appropriate exercise countermeasures associated with extended exposure to hypogravity. OBJECTIVES The aim of this paper is to define an experimental protocol and methodology suitable to estimate in high-fidelity hypogravity conditions the lower limb internal joint reaction forces. State-of-the-art movement kinetics, kinematics, muscle activation and muscle-tendon unit behaviour during locomotor and plyometric movements will be collected and used as inputs (Objective 1), with musculoskeletal modelling and an optimisation framework used to estimate lower limb internal joint loading (Objective 2). METHODS Twenty-six healthy participants will be recruited for this cross-sectional study. Participants will walk, skip and run, at speeds ranging between 0.56-3.6 m/s, and perform plyometric movement trials at each gravity level (1, 0.7, 0.5, 0.38, 0.27 and 0.16g) in a randomized order. Through the collection of state-of-the-art kinetics, kinematics, muscle activation and muscle-tendon behaviour, a musculoskeletal modelling framework will be used to estimate lower limb joint reaction forces via tracking simulations. CONCLUSION The results of this study will provide first estimations of internal musculoskeletal loads associated with human movement performed in a range of hypogravity levels. Thus, our unique data will be a key step towards modelling the musculoskeletal deconditioning associated with long term habitation on the Lunar surface, and thereby aiding the design of Lunar exercise countermeasures and mitigation strategies.
Collapse
Affiliation(s)
- Nolan Herssens
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
| | - James Cowburn
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Kirsten Albracht
- Centre for Health and Integrative Physiology in Space, German Sport University, Cologne, Germany
- Institute of Movement and Neuroscience, German Sport University, Cologne, Germany
- Department of Medical Engineering and Technomathematics, University of Applied Sciences Aachen, Aachen, Germany
| | - Bjoern Braunstein
- Centre for Health and Integrative Physiology in Space, German Sport University, Cologne, Germany
- Institute of Movement and Neuroscience, German Sport University, Cologne, Germany
- Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
- German Research Centre of Elite Sport Cologne, Cologne, Germany
| | - Dario Cazzola
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Steffi Colyer
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Alberto E. Minetti
- Laboratory of Physiomechanics of Locomotion, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gaspare Pavei
- Laboratory of Physiomechanics of Locomotion, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Jörn Rittweger
- Division of Muscle and Bone Metabolism, Institute of Aerospace Medicine DLR, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Tobias Weber
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR, Cologne, North Rhein-Westphalia, Germany
| | - David A. Green
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR, Cologne, North Rhein-Westphalia, Germany
- Centre of Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
4
|
Supervised Physiotherapy Improves Three-Dimensional (3D) Gait Parameters in Patients after Surgical Suturing of the Achilles Tendon Using an Open Method (SSATOM). J Clin Med 2022; 11:jcm11123335. [PMID: 35743407 PMCID: PMC9225029 DOI: 10.3390/jcm11123335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The aim of this study was to assess the effectiveness of 38 supervised postoperative physiotherapy (SVPh) visits conducted between 1 and 20 weeks after SSATOM on the values of 3D gait parameters measured at 10 and 20 weeks after surgery. MATERIAL Group I comprised male patients (n = 22) after SSATOM (SVPh x = 38 visits) and Group II comprised male patients (n = 22) from the control group. METHODS A non-randomized, open-label, controlled clinical trial was performed in the two groups to obtain the following values: Step length (cm), stride length (cm), step width (cm), next stance phase (%), swing phase (%), double support (%), gait velocity (m/s), and walking frequency (step/min). The measurements were carried out using the BTS SMART system (Italy). RESULTS Orthopedic examination showed no pain, a negative result of Thompson and Matles tests, and proper healing of Achilles tendon (ultrasound image). In Group I, between 10 and 20 weeks after SSATOM, there was a statistically significant improvement in all tested gait parameter values (p ≤ 0.001 to 0.009). CONCLUSIONS Conducting 38 SVPh visits significantly improved the values of the analyzed kinematic and spatiotemporal gait parameters in patients in the twentieth week after SSATOM, which were mostly close to the non-operated side and the results of the control group. However, the gait speed and stride length were not close to the results of the control group.
Collapse
|