1
|
Schwenzer N, Teiwes NK, Kohl T, Pohl C, Giller MJ, Lehnart SE, Steinem C. Ca V1.3 channel clusters characterized by live-cell and isolated plasma membrane nanoscopy. Commun Biol 2024; 7:620. [PMID: 38783117 PMCID: PMC11116533 DOI: 10.1038/s42003-024-06313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
A key player of excitable cells in the heart and brain is the L-type calcium channel CaV1.3. In the heart, it is required for voltage-dependent Ca2+-signaling, i.e., for controlling and modulating atrial cardiomyocyte excitation-contraction coupling. The clustering of CaV1.3 in functionally relevant channel multimers has not been addressed due to a lack of stoichiometric labeling combined with high-resolution imaging. Here, we developed a HaloTag-labeling strategy to visualize and quantify CaV1.3 clusters using STED nanoscopy to address the questions of cluster size and intra-cluster channel density. Channel clusters were identified in the plasma membrane of transfected live HEK293 cells as well as in giant plasma membrane vesicles derived from these cells that were spread on modified glass support to obtain supported plasma membrane bilayers (SPMBs). A small fraction of the channel clusters was colocalized with early and recycling endosomes at the membranes. STED nanoscopy in conjunction with live-cell and SPMB imaging enabled us to quantify CaV1.3 cluster sizes and their molecular density revealing significantly lower channel densities than expected for dense channel packing. CaV1.3 channel cluster size and molecular density were increased in SPMBs after treatment of the cells with the sympathomimetic compound isoprenaline, suggesting a regulated channel cluster condensation mechanism.
Collapse
Affiliation(s)
- Niko Schwenzer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert‑Koch‑Str. 42a, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37073, Göttingen, Germany
| | - Nikolas K Teiwes
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37073, Göttingen, Germany
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Tobias Kohl
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert‑Koch‑Str. 42a, 37075, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Celine Pohl
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Michelle J Giller
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert‑Koch‑Str. 42a, 37075, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37073, Göttingen, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Collaborative Research Center SFB 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| | - Claudia Steinem
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37073, Göttingen, Germany.
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany.
- Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Vijayakumar A, Wang M, Kailasam S. The Senescent Heart-"Age Doth Wither Its Infinite Variety". Int J Mol Sci 2024; 25:3581. [PMID: 38612393 PMCID: PMC11011282 DOI: 10.3390/ijms25073581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality world-wide. While many factors like smoking, hypertension, diabetes, dyslipidaemia, a sedentary lifestyle, and genetic factors can predispose to cardiovascular diseases, the natural process of aging is by itself a major determinant of the risk. Cardiac aging is marked by a conglomerate of cellular and molecular changes, exacerbated by age-driven decline in cardiac regeneration capacity. Although the phenotypes of cardiac aging are well characterised, the underlying molecular mechanisms are far less explored. Recent advances unequivocally link cardiovascular aging to the dysregulation of critical signalling pathways in cardiac fibroblasts, which compromises the critical role of these cells in maintaining the structural and functional integrity of the myocardium. Clearly, the identification of cardiac fibroblast-specific factors and mechanisms that regulate cardiac fibroblast function in the senescent myocardium is of immense importance. In this regard, recent studies show that Discoidin domain receptor 2 (DDR2), a collagen-activated receptor tyrosine kinase predominantly located in cardiac fibroblasts, has an obligate role in cardiac fibroblast function and cardiovascular fibrosis. Incisive studies on the molecular basis of cardiovascular aging and dysregulated fibroblast function in the senescent heart would pave the way for effective strategies to mitigate cardiovascular diseases in a rapidly growing elderly population.
Collapse
Affiliation(s)
- Anupama Vijayakumar
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA;
| | - Shivakumar Kailasam
- Department of Biotechnology, University of Kerala, Kariavattom, Trivandrum 695581, India
| |
Collapse
|
3
|
Chen M, Wu Q. Roles and mechanisms of natural drugs on sinus node dysfunction. Biomed Pharmacother 2023; 164:114777. [PMID: 37229801 DOI: 10.1016/j.biopha.2023.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Sinus node dysfunction is a common arrhythmia disorder with a high incidence and significant social and economic burden. Currently, there are no effective drugs for treating chronic sinus node dysfunction. The disease is associated with ion channel disturbances caused by aging, fibrosis, inflammation, oxidative stress, and autonomic dysfunction. Natural active substances and Chinese herbal medicines have been widely used and extensively studied in the medical community for the treatment of arrhythmias. Multiple studies have demonstrated that various active ingredients and Chinese herbal medicines, such as astragaloside IV, quercetin, and ginsenosides, exhibit antioxidant effects, reduce fibrosis, and maintain ion channel stability, providing promising drugs for treating sinus node dysfunction. This article summarizes the research progress on natural active ingredients and Chinese herbal formulas that regulate sick sinoatrial node function, providing valuable references for the treatment of sinus node dysfunction.
Collapse
Affiliation(s)
- Meilian Chen
- Quanzhou Hospital of Traditional Chinese Medicine, Fujian 362000, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|