1
|
Campos-Herrera R, Georgis R, Londoño DK, Malan A, Molina C, Shapiro-Ilan D, Soler R, Stock SP, Vandenbossche B. Connecting academia and industry: Advancing the use of entomopathogenic nematodes to tackle emerging challenges and opportunities in modern agriculture. J Invertebr Pathol 2025; 211:108350. [PMID: 40318826 DOI: 10.1016/j.jip.2025.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
The collaboration among academia, industry, and government is crucial for scientific progress and innovation. Academia generates fundamental knowledge, which industry translates into sound applications, considering government policies. This partnership is vital to feed progress and constant development and address global challenges like climate change and food security. Sustainable crop protection is a topical theme, with efforts to reduce pesticide reliance and promote alternatives to chemical pest management, and it continues to grow and be accepted worldwide. In this respect, biopesticides such as entomopathogenic nematodes (EPNs) offer a promising solution for pest and disease management as an eco-friendly alternative. However, EPN continue to face adoption barriers due to regulatory, commercialization and basic and applied knowledge gaps. Thus, stronger collaborations are needed to unlock their full potential, as highlighted in the 2024 congress organized in La Rioja (Spain) to commemorate the 100 years since the discovery of the first EPN. This review examines the gap between academia and industry, suggesting strategies to bridge it, thereby promoting the advancement of EPN in 21st-century agriculture. Despite decades of research demonstrating their efficacy, EPN commercialization remains limited by production, formulation, and application challenges. Universities and government research agencies have driven fundamental innovation through the discovery of new EPN-bacteria partnerships in new regions of the world, which are helping us understand their distribution and habitant adaptations which are required for their registration and in establishing global regulations. Research conducted both in academia and the private sector (both big and small start-up companies) has and continues to play a key role in the characterization of EPN and in assessing their performance for their subsequent formulation, product optimization, and commercialization. These are fundamental steps to reach the ultimate goal, which is to provide growers with reliable products that are cost-effective and sustainable. In this review, we summarize key findings that have led to the commercialization and application of EPN, spanning from the characterization of EPN and their symbiotic bacteria to production, formulation, and the requirements for their registration. We also highlight critical knowledge gaps and opportunities for collaboration between academia, government agencies, and industry. Strengthening these partnerships will drive EPN adoption in agriculture, establishing them as a desirable biocontrol solution.
Collapse
Affiliation(s)
- Raquel Campos-Herrera
- Instituto de las Ciencias de la Vid y del Vino (ICVV) (Gobierno de La Rioja, CSIC, Universidad de La Rioja), Finca La Grajera Crta. Burgos Km. 6 Salida 13 Lo-20, 26007 Logroño, Spain.
| | - Ramon Georgis
- BRANDT International LLC, 100 South Tampa Street, Suite 3500, Tampa, FL 33603, USA
| | - Diana K Londoño
- BASF Corporation, 26 Davis Drive, NC 27709 Research Triangle Park, USA
| | - Antoinette Malan
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Carlos Molina
- e-nema GmbH, Klausdorfer Str. 28-36, 24223 Schwentinental, Germany
| | - David Shapiro-Ilan
- USDA-ARS, Southeastern Fruit and Tree Nut Research Station, Byron, GA 31008 USA
| | - Roxina Soler
- KOPPERT B.V. Agronomical Research and Development. Veilingweg 14, 2651 BE Berkel en Rodenrijs, the Netherlands
| | - S Patricia Stock
- Department of Horticulture, College of Agricultural Sciences, Oregon State University, Agriculture and Life Sciences (ALS), Bldg. Rm 4007B, 2750 SW Campus Way, Corvallis, OR 97331, United States
| | | |
Collapse
|
2
|
Stock SP, Hazir S. The bacterial symbionts of Entomopathogenic nematodes and their role in symbiosis and pathogenesis. J Invertebr Pathol 2025; 211:108295. [PMID: 40032241 DOI: 10.1016/j.jip.2025.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Entomopathogenic bacteria in the genera Xenorhabdus and Photorhabdus are mutualistically associated with entomopathogenic nematodes (EPN) Steinernema and Heterorhabditis, respectively. Together they form an insecticidal partnership which has been shown to kill a wide range of insect species. The spectrum of dependence in this symbiotic partnership is diverse, ranging from a tight, obligate relationship to a facultative one. A body of evidence suggests that the reproductive fitness of the nematode-bacterium partnership is tightly associated and interdependent. Furthermore, maintenance of their virulence is also critical to the conversion of the insect host as a suitable environment where this partnership can be perpetuated. Disruption of the symbiotic partnership can have detrimental effects on the fitness of both partners. The nematode-bacterial symbiont-insect partnership represents a model system in ecology and evolutionary biology and amenable to investigate beneficial and antagonistic interactions between invertebrates and microbes. Furthermore, the EPN's bacterial symbionts are also viewed as a model system to study the biosynthesis, structure and function of various natural products. Their ability to produce up to 25 different natural product classes is outstanding among the Morganellaceae. These natural products show biological activity, most likely originating from important functions during the life cycle of both the nematodes and their symbionts. Tools and high throughput technologies have been developed to identify ubiquitous and rare molecules and study their function and assess their potential as novel biological activities. We herein summarize the symbiotic relationship between EPN and their bacterial symbionts, focusing on their fitness and their ability to successfully access and utilize an insect host. We also recapitulate the history of natural products research highlighting recent findings and the synthetic biology approaches that are currently implemented to identify non-natural derivatives from Xenorhabdus and Photorhabdus with improved biological activity.
Collapse
Affiliation(s)
- S Patricia Stock
- Department of Horticulture, Oregon State University, Agriculture and Life Sciences Bldg. Rm 4007B 2750 SW Campus Way, Corvallis, OR 97331, USA.
| | - Selçuk Hazir
- Aydin Adnan Menderes University, Faculty of Science, Department of Biology, Aydin, Turkey
| |
Collapse
|
3
|
Chaudhary S, Ali W, Yadav M, Singh G, Gupta N, Grover S, Ghosh C, Chandra S, Rathore JS. Computational exploration of the genomic assignments, molecular structure, and dynamics of the ccdABXn2 toxin-antitoxin homolog with its bacterial target, the DNA gyrase, in the entomopathogen Xenorhabdus nematophila. J Biomol Struct Dyn 2024:1-15. [PMID: 38321949 DOI: 10.1080/07391102.2024.2311337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Toxin-antitoxin (TA) modules, initially discovered on bacterial plasmids and subsequently identified within chromosomal contexts, hold a pivotal role in the realm of bacterial physiology. Among these, the pioneering TA system, ccd (Control of Cell Death), primarily localized on the F-plasmid, is known for its orchestration of plasmid replication with cellular division. Nonetheless, the precise functions of such systems within bacterial chromosomal settings remain a compelling subject that demands deeper investigation. To bridge this knowledge gap, our study focuses on exploring ccdABXn2, a chromosomally encoded TA module originating from the entomopathogenic bacterium Xenorhabdus nematophila. We meticulously delved into the system's genomic assignments, structural attributes, and functional interplay. Our findings uncovered intriguing patterns-CcdB toxin homologs exhibited higher conservation levels compared to their CcdA antitoxin counterparts. Moreover, we constructed secondary as well as tertiary models for both the CcdB toxin and CcdA antitoxin using threading techniques and subsequently validated their structural integrity. Our exploration extended to the identification of key interactions, including the peptide interaction with gyrase for the CcdB homolog and CcdB toxin interactions for the CcdA homolog, highlighting the intricate TA interaction network. Through docking and simulation analyses, we unequivocally demonstrated the inhibition of replication via binding the CcdB toxin to its target, DNA gyrase. These insights provide valuable knowledge about the metabolic and physiological roles of the chromosomally encoded ccdABXn2 TA module within the context of X. nematophila, significantly enhancing our comprehension of its functional significance within the intricate ecosystem of the bacterial host.
Collapse
Affiliation(s)
- Shobhi Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Waseem Ali
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Nomita Gupta
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Sonam Grover
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Chaitali Ghosh
- Department of Zoology, Gargi College, University of Delhi, New Delhi, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, India
| | | |
Collapse
|
4
|
Bhat AH, Machado RAR, Abolafia J, Ruiz-Cuenca AN, Askary TH, Ameen F, Dass WM. Taxonomic and molecular characterization of a new entomopathogenic nematode species, Heterorhabditis casmirica n. sp., and whole genome sequencing of its associated bacterial symbiont. Parasit Vectors 2023; 16:383. [PMID: 37880744 PMCID: PMC10598981 DOI: 10.1186/s13071-023-05990-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Nematodes of the genus Heterorhabditis are important biocontrol agents as they form a lethal combination with their symbiotic Photorhabdus bacteria against agricultural insect pests. This study describes a new species of Heterorhabditis. METHODS Six Heterorhabditis nematode populations were recovered from agricultural soils in Jammu and Kashmir, India. An initial examination using mitochondrial and nuclear genes showed that they belong to a new species. To describe this new species, a variety of analyses were conducted, including reconstructing phylogenetic relationships based on multiple genes, characterizing the nematodes at the morphological and morphometric levels, performing self-crossing and cross-hybridization experiments, and isolating and characterizing their symbiotic bacteria. RESULTS The newly discovered species, Heterorhabditis casmirica n. sp., shares 94% mitochondrial cytochrome C oxidase subunit I gene (COI) sequence identity with Heterorhabditis bacteriophora and Heterorhabditis ruandica, and 93% with Heterorhabditis zacatecana. Morphologically, it differs from H. bacteriophora in its infective juvenile phasmids (present vs. inconspicuous) and bacterial pouch visibility in the ventricular portion of the intestine (invisible vs. visible); genital papilla 1 (GP1) position (at manubrium level vs. more anterior), and in its b ratio (body length/neck length), c ratio (tail length/bulb width), and D% [(excretory pore/neck length) × 100]. Other morphological differences include anterior end to the nerve ring distance (77-100 vs. 121-130 μm), V% [(anterior end of vulva/body length) × 100] (46-57 vs. 41-47) in hermaphroditic females; rectum size (slightly longer than the anal body diameter vs. about three times longer), phasmids (smaller vs. inconspicuous), body length (0.13-2.0 vs. 0.32-0.39 mm), body diameter (73-150 vs. 160-220 μm), anterior end to the excretory pore distance (135-157 vs. 174-214 μm), and demanian ratios in amphimictic females. Morphological differences with H. ruandica and H. zacatecana were also observed. Furthermore, H. casmirica n. sp. did not mate or produce fertile progeny with other Heterorhabditis nematodes reported from India. It was also discovered that H. casmirica n. sp. is associated with Photorhabdus luminescence subsp. clarkei symbiotic bacteria. CONCLUSIONS The discovery of H. casmirica n. sp. provides novel insights into the diversity and evolution of Heterorhabditis nematodes and their symbiotic bacteria. This new species adds to the catalog of entomopathogenic nematodes in India.
Collapse
Affiliation(s)
- Aashaq Hussain Bhat
- Department of Biosciences, University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
- Experimental Biology Research Group, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Neuchâtel, 2000, Switzerland.
| | - Ricardo A R Machado
- Experimental Biology Research Group, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Joaquín Abolafia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus 'Las Lagunillas', Jaén, 23071, Spain
| | - Alba N Ruiz-Cuenca
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus 'Las Lagunillas', Jaén, 23071, Spain
| | - Tarique Hassan Askary
- Division of Entomology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Wadura Campus, Sopore, 193201, Jammu and Kashmir, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Wasim Muzamil Dass
- Department of Zoology, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| |
Collapse
|
5
|
Chaudhary S, Yadav M, Mathpal S, Chandra S, Rathore JS. Genomic assortment and interactive insights of the chromosomal encoded control of cell death ( ccd) toxin-antitoxin (TA) module in Xenorhabdus nematophila. J Biomol Struct Dyn 2023; 41:7032-7044. [PMID: 36002267 DOI: 10.1080/07391102.2022.2114940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
In the present circumstances, toxin-antitoxin (TA) modules have a great consideration due to their elusive role in bacterial physiology. TA modules consist of a toxic part and a counteracting antitoxin part and these are abundant genetic loci harbored on bacterial plasmids and chromosomes. The control of cell death (ccd) TA locus was the first identified TA module and its unitary function (such as plasmid maintenance) has been described, however, the function of its chromosomal counterparts is still ambiguous. Here, we are exploring the genomic assortment, structural and functional association of chromosomally encoded ccdAB TA homolog (ccdABXn1) in the genome of an entomopathogenic bacterium Xenorhabdus nematophila. This bacterium is a symbiotic model with the nematode Steinernema carpocapsae that infects and kills the host insect. By genomic assortment analysis, our observations suggested that CcdA antitoxin homologs are not more closely related than CcdB toxin homologs. Further results suggest that the ccdABXn1 TA homolog has sulphonamide (such as 4C6, for CcdA homolog) and peptide (such as gyrase, for CcdB homolog) ligand partners with a typical TA interaction network that may affect essential cellular metabolism of the X. nematophila. Collectively, our results improve the knowledge and conception of the metabolic interactive role of ccdAB TA homologs in X. nematophila physiology.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shobhi Chaudhary
- Gautam Buddha University, School of Biotechnology, Greater Noida, Uttar Pradesh, India
| | - Mohit Yadav
- Gautam Buddha University, School of Biotechnology, Greater Noida, Uttar Pradesh, India
| | - Shalini Mathpal
- Department of Biotechnology, Kumaun University Uttarakhand, Bhimtal, India
| | - Subhash Chandra
- Department of Botany, Computational Biology & Biotechnology Laboratory, Soban Singh Jeena University, Almora, Uttarakhand, India
| | | |
Collapse
|
6
|
Abd-Elgawad MMM. Optimizing Entomopathogenic Nematode Genetics and Applications for the Integrated Management of Horticultural Pests. HORTICULTURAE 2023; 9:865. [DOI: 10.3390/horticulturae9080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Entomopathogenic nematodes (EPNs) can kill and recycle in their host populations, which bodes well for EPNs’ exploitation in long-term and safe pest management. However, EPNs’ cost and efficacy need transformational technology to supplant less expensive and more effective but toxic/unhealthy pesticides. A technology that allows for the significant uptake of commercial EPNs should both boost their market suitability and provide genetic improvements. This review provides brief overviews of EPNs’ biology and ecology from the standpoint of pest/pathogen management as a prerequisite for EPN improvements. Understanding the biology and ecology of EPNs, particularly their symbiotic relationships with bacteria, is crucial to their effective use in pest management. This review provides relevant insights into EPN-symbiotic bacteria and the EPN–symbiont complex. The symbiotic relationship between EPNs and bacteria plays a key role in IPM, providing unique advantages. Either of them can be included in mechanisms underlying the various positive sides of plant–insect interactions in emerging integrated pest management (IPM) systems. Recent approaches, in which EPNs can act additively or synergistically with other production inputs in IPM programs, are discussed for further expansion. The simultaneous favorable effects of EPNs and/or their mutualistic bacteria on several pest/pathogen species of crops should be identified. Merits, such as the rapid killing of insect pests, ease of EPN/the symbiont’s mass production and a broad host range, are presented in order to widely disseminate the conditions under which EPN usage can offer a cost-effective and/or value-added technique for IPM. To maximize the effectiveness of EPNs in IPM, various genetic improvement techniques are being explored. Such techniques, along with their merits/demerits and related tools, are reviewed to optimize the common biocontrol usage of EPNs. Examples of genetic improvements to EPNs that allow for their use in transformational technology, such as a cost-effective application technique, increased infectivity, and toleration of unfavorable settings, are given. Proper production practices and genetic techniques should be applied carefully to avoid undesirable results; it is suggested that these are considered on a case-by-case basis. This will enable us to optimize EPN performance based on the given variables.
Collapse
Affiliation(s)
- Mahfouz M. M. Abd-Elgawad
- Plant Pathology Department, Agricultural and Biological Research Institute, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
7
|
Zhan C, Chen L, Guo D, Sun J, Duan Y, Zhang P, Li P, Ma L, Xu M, Wang Y, Bao H, Gao G, Liu L, Zhang K. An Intestinal Symbiotic Bacterial Strain of Oscheius chongmingensis Modulates Host Viability at Both Global and Post-Transcriptional Levels. Int J Mol Sci 2022; 23:ijms232314692. [PMID: 36499019 PMCID: PMC9739912 DOI: 10.3390/ijms232314692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
A rhabditid entomopathogenic nematode (EPN), Oscheius chongmingensis, has a stable symbiotic relationship with the bacterial strain Serratia nematodiphila S1 harbored in its intestines and drastically reduced viability when associated with a non-native strain (186) of the same bacterial species. This nematode is thus a good model for understanding the molecular mechanisms and interactions involved between a nematode host and a member of its intestinal microbiome. Transcriptome analysis and RNA-seq data indicated that expression levels of the majority (8797, 87.59%) of mRNAs in the non-native combination of O. chongmingensis and S. nematodiphila 186 were downregulated compared with the native combination, including strain S1. Accordingly, 88.84% of the total uniq-sRNAs mapped in the O. chongmingensis transcriptome were specific between the two combinations. Six DEGs, including two transcription factors (oc-daf-16 and oc-goa-1) and four kinases (oc-pdk-1, oc-akt-1, oc-rtk, and oc-fak), as well as an up-regulated micro-RNA, oc-miR-71, were found to demonstrate the regulatory mechanisms underlying diminished host viability induced by a non-native bacterial strain. Oc-rtk and oc-fak play key roles in the viability regulation of O. chongmingensis by positively mediating the expression of oc-daf-16 to indirectly impact its longevity and stress tolerances and by negatively regulating the expression of oc-goa-1 to affect the olfactory chemotaxis and fecundity. In response to the stress of invasion by the non-native strain, the expression of oc-miR-71 in the non-native combination was upregulated to downregulate the expression of its targeting oc-pdk-1, which might improve the localization and activation of the transcription factor DAF-16 in the nucleus to induce longevity extension and stress resistance enhancement to some extent. Our findings provide novel insight into comprehension of how nematodes deal with the stress of encountering novel potential bacterial symbionts at the physiological and molecular genetic levels and contribute to improved understanding of host-symbiont relationships generally.
Collapse
Affiliation(s)
- Chengxiu Zhan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Long Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dandan Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunbin Duan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Panjie Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengpeng Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijun Ma
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Man Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoran Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guofu Gao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crop (East China), Ministry of Agriculture and Rural Affairs, College of Horiticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (L.L.); (K.Z.)
| | - Keyun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (L.L.); (K.Z.)
| |
Collapse
|
8
|
Zhang Y, Wang F, Zhao Z. Metabonomics reveals that entomopathogenic nematodes mediate tryptophan metabolites that kill host insects. Front Microbiol 2022; 13:1042145. [PMID: 36439848 PMCID: PMC9686292 DOI: 10.3389/fmicb.2022.1042145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The entomopathogenic nematode (EPN) Steinernema feltiae, which carries the symbiotic bacterium Xenorhabdus bovienii in its gut, is an important biocontrol agent. This EPN could produce a suite of complex metabolites and toxin proteins and lead to the death of host insects within 24–48 h. However, few studies have been performed on the key biomarkers released by EPNs to kill host insects. The objective of this study was to examine what substances produced by EPNs cause the death of host insects. We found that all densities of nematode suspensions exhibited insecticidal activities after hemocoelic injection into Galleria mellonella larvae. EPN infection 9 h later led to immunosuppression by activating insect esterase activity, but eventually, the host insect darkened and died. Before insect immunity was activated, we applied a high-resolution mass spectrometry-based metabolomics approach to determine the hemolymph of the wax moth G. mellonella infected by EPNs. The results indicated that the tryptophan (Trp) pathway of G. mellonella was significantly activated, and the contents of kynurenine (Kyn) and 3-hydroxyanthranilic acid (3-HAA) were markedly increased. Additionally, 3-HAA was highly toxic to G. mellonella and resulted in corrected mortalities of 62.50%. Tryptophan metabolites produced by EPNs are a potential marker to kill insects, opening up a novel line of inquiry into exploring the infestation mechanism of EPNs.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fang Wang
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia, China
| | - Zihua Zhao
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- *Correspondence: Zihua Zhao,
| |
Collapse
|
9
|
Abd-Elgawad MMM. Xenorhabdus spp.: An Overview of the Useful Facets of Mutualistic Bacteria of Entomopathogenic Nematodes. Life (Basel) 2022; 12:1360. [PMID: 36143397 PMCID: PMC9503066 DOI: 10.3390/life12091360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/17/2022] Open
Abstract
Mounting concern over the misuse of chemical pesticides has sparked broad interest for safe and effective alternatives to control plant pests and pathogens. Xenorhabdus bacteria, as pesticidal symbionts of the entomopathogenic nematodes Steinernema species, can contribute to this solution with a treasure trove of insecticidal compounds and an ability to suppress a variety of plant pathogens. As many challenges face sound exploitation of plant-phytonematode interactions, a full useful spectrum of such interactions should address nematicidal activity of Xenorhabdus. Steinernema-Xenorhabdus complex or Xenorhabdus individually should be involved in mechanisms underlying the favorable side of plant-nematode interactions in emerging cropping systems. Using Xenorhabdus bacteria should earnestly be harnessed to control not only phytonematodes, but also other plant pests and pathogens within integrated pest management plans. This review highlights the significance of fitting Xenorhabdus-obtained insecticidal, nematicidal, fungicidal, acaricidal, pharmaceutical, antimicrobial, and toxic compounds into existing, or arising, holistic strategies, for controlling many pests/pathogens. The widespread utilization of Xenorhabdus bacteria, however, has been slow-going, due to costs and some issues with their commercial processing. Yet, advances have been ongoing via further mastering of genome sequencing, discovering more of the beneficial Xenorhabdus species/strains, and their successful experimentations for pest control. Their documented pathogenicity to a broad range of arthropods and pathogens and versatility bode well for useful industrial products. The numerous beneficial traits of Xenorhabdus bacteria can facilitate their integration with other tactics for better pest/disease management programs.
Collapse
Affiliation(s)
- Mahfouz M M Abd-Elgawad
- Plant Pathology Department, Agricultural and Biological Research Division, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|