1
|
Jiang M, Alqahtani SA, Seto WK, Yilmaz Y, Pan Z, Valenti L, Eslam M. Alternative splicing: hallmark and therapeutic opportunity in metabolic liver disease. Gastroenterol Rep (Oxf) 2025; 13:goaf044. [PMID: 40438258 PMCID: PMC12116422 DOI: 10.1093/gastro/goaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/23/2025] [Accepted: 04/15/2025] [Indexed: 06/01/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has become the leading cause of chronic liver disease worldwide, with fibrosis recognized as the main prognostic factor and therapeutic target. While early-stage fibrosis is reversible, advanced fibrosis poses a significant clinical challenge due to limited treatment options, highlighting the need for innovative management strategies. Recent studies have shown that alternative pre-mRNA splicing, a critical mechanism regulating gene expression and protein diversity, plays a fundamental role in the pathogenesis of MAFLD and associated fibrosis. Understanding the complex relationship between alternative splicing and fibrosis progression in MAFLD could pave the way for novel therapeutic approaches and improve clinical outcomes. In this review, we describe the intricate mechanisms of alternative splicing in fibrosis associated with MAFLD. Specifically, we explored the pivotal of splicing factors, and RNA-binding proteins, highlighting their critical interactions with metabolic and epigenetic regulators. Furthermore, we provide an overview of the latest advancements in splicing-based therapeutic strategies and biomarker development. Particular emphasis is placed on the potential application of antisense oligonucleotides for rectifying splicing anomalies, thereby laying the foundation for precision medicine approaches in the treatment of MAFLD-associated fibrosis.
Collapse
Affiliation(s)
- Mingqian Jiang
- Department of Endocrinology and Metabolism, People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P. R. China
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Saleh A Alqahtani
- Liver, Digestive, & Lifestyle Health Research Section, and Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Wai-Kay Seto
- Department of Medicine, The University of Hong Kong, Hong Kong, P. R. China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, P. R. China
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Precision Medicine, Biological Resource Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| |
Collapse
|
2
|
Golounina O, Minniakhmetov I, Salakhov R, Khusainova R, Zakharova E, Bychkov I, Mokrysheva N. Pathogenetic therapeutic approaches for endocrine diseases based on antisense oligonucleotides and RNA-interference. Front Endocrinol (Lausanne) 2025; 16:1525373. [PMID: 39944202 PMCID: PMC11813780 DOI: 10.3389/fendo.2025.1525373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/13/2025] [Indexed: 05/09/2025] Open
Abstract
Molecular therapy uses nucleic acid-based therapeutics agents and becomes a promising alternative for disease conditions unresponsive to traditional pharmaceutical approaches. Antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) are two well-known strategies used to modulate gene expression. RNA-targeted therapy can precisely modulate the function of target RNA with minimal off-target effects and can be rationally designed based on sequence data. ASOs and siRNA-based drugs have unique capabilities for using in target groups of patients or can be tailored as patient-customized N-of-1 therapeutic approach. Antisense therapy can be utilized not only for the treatment of monogenic diseases but also holds significant promise for addressing polygenic and complex diseases by targeting key genes and molecular pathways involved in disease pathogenesis. In the context of endocrine disorders, molecular therapy is particularly effective in modulating pathogenic mechanisms such as defective insulin signaling, beta-cell dysfunction and hormonal imbalances. Furthermore, siRNA and ASOs have the ability to downregulate overactive signaling pathways that contribute to complex, non-monogenic endocrine disorders, thereby addressing these conditions at their molecular origin. ASOs are also being studied worldwide as unique candidates for developing therapies for N-of-1 therapies. The sequence-specific ASOs binding provides exceptional accuracy in N-of-1 approaches, when the oligonucleotide can be targeted to a patient's exact mutant sequence. In this review we focus on diseases of the endocrine system and discuss potential RNA-targeted therapeutic opportunities in diabetes mellitus, including monogenic beta cell diabetes, and obesity, including syndrome obesity and monogenic obesity, as well as in non-monogenic or complex endocrine disorders. We also provide an overview of currently developed and available antisense molecules, and describe potentials of antisense-based therapeutics for the treatment of rare and «ultrarare» endocrine diseases.
Collapse
Affiliation(s)
- Olga Golounina
- Department of Clinical Endocrinology, Endocrinology Research Centre, Moscow, Russia
| | - Ildar Minniakhmetov
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Ramil Salakhov
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Rita Khusainova
- Laboratory of Genomic Medicine, Endocrinology Research Centre, Moscow, Russia
| | - Ekaterina Zakharova
- Selective Screening Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - Igor Bychkov
- Laboratory of Experimental Gene Therapy for Inherited Metabolic Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | - Natalia Mokrysheva
- Department of Clinical Endocrinology, Endocrinology Research Centre, Moscow, Russia
| |
Collapse
|
3
|
Khare V, Cherqui S. Targeted gene therapy for rare genetic kidney diseases. Kidney Int 2024; 106:1051-1061. [PMID: 39222842 DOI: 10.1016/j.kint.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Chronic kidney disease is one of the leading causes of mortality worldwide because of kidney failure and the associated challenges of its treatment including dialysis and kidney transplantation. About one-third of chronic kidney disease cases are linked to inherited monogenic factors, making them suitable for potential gene therapy interventions. However, the intricate anatomical structure of the kidney poses a challenge, limiting the effectiveness of targeted gene delivery to the renal system. In this review, we explore the progress made in the field of targeted gene therapy approaches and their implications for rare genetic kidney disorders, examining preclinical studies and prospects for clinical application. In vivo gene therapy is most commonly used for kidney-targeted gene delivery and involves administering viral and nonviral vectors through various routes such as systemic, renal vein, and renal arterial injections. Small nucleic acids have also been used in preclinical and clinical studies for treating certain kidney disorders. Unexpectedly, hematopoietic stem and progenitor cells have been used as an ex vivo gene therapy vehicle for kidney gene delivery, highlighting their ability to differentiate into macrophages within the kidney, forming tunneling nanotubes that can deliver genetic material and organelles to adjacent kidney cells, even across the basement membrane to target the proximal tubular cells. As gene therapy technologies continue to advance and our understanding of kidney biology deepens, there is hope for patients with genetic kidney disorders to eventually avoid kidney transplantation.
Collapse
Affiliation(s)
- Veenita Khare
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
4
|
Cao X, An J, Zhu S, Feng M, Gang Y, Wen C, Hu B. Nuclear factor E2-associated factor 2 and musculoaponeurotic fibrosarcoma K mediate regulation glutathione peroxidase of Cristaria plicata after microcystin-induced oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109742. [PMID: 37689170 DOI: 10.1016/j.cbpc.2023.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Nuclear factor E2-associated factor 2 (Nrf2)/Antioxidant Response Element (ARE) signaling pathway is an endogenous antioxidant pathway that protects cells from oxidative damage. This pathway is triggered when aquatic organisms are exposed to environmental toxicants. In this study, CpMafK (musculoaponeurotic fibrosarcoma K of Cristaria plicata) mRNA expression in hepatopancreas and gills were up regulated after Cristaria plicata (C. plicata) was exposed to microcystin (MC), which showed that CpMafK protected C. plicata from MC. After MC treatment and CpNrf2 (Nrf2 of Cristaria plicata) knockdown, the mRNA expression of CpMafK was down regulated. After MC treatment and CpMafK knockdown, the mRNA expression of CpNrf2 was down regulated. Indicating that the expression of CpNrf2 was positively correlated with CpMafK. CpGPx (GPx of Cristaria plicata) mRNA was also down regulated with the down regulation of CpMafK and CpNrf2. CpGPx promoter contains a variety of transcription factor binding sites, including Nrf2, ARE elements, etc. Gel blocking experiments showed that CpNrf2/CpMafK heterodimers were bound to CpGPx promoters in vitro. Dual luciferase reporter assay showed that CpNrf2/CpMafK heterodimer negatively regulated CpGPx promoter in cells. In conclusion, Nrf2 and MafK mediate regulation of GPx play a crucial role in protecting bivalves from MC.
Collapse
Affiliation(s)
- Xinying Cao
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Jinhua An
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Shanshan Zhu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Maolin Feng
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Yang Gang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China.
| | - Baoqing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Pan Y, Guan J, Gao Y, Zhu Y, Li H, Guo H, He Q, Guan Z, Yang Z. Modified ASO conjugates encapsulated with cytidinyl/cationic lipids exhibit more potent and longer-lasting anti-HCC effects. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:807-821. [PMID: 37251692 PMCID: PMC10220282 DOI: 10.1016/j.omtn.2023.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Antisense oligonucleotides (ASOs) are a class of therapeutics targeting mRNAs or genes that have attracted much attention. However, effective delivery and optimal accumulation in target tissues in vivo are still challenging issues. CT102 is an ASO that targets IGF1R mRNA and induces cell apoptosis. Herein, a detailed exploration of the tissue distribution of ASOs delivered by liposomes was carried out. A formulation that resulted in increased hepatic accumulation was identified based on multiple intermolecular interactions between DCP (cytidinyl/cationic lipid DNCA/CLD and DSPE-PEG) and oligonucleotides, including hydrogen bonding, π-π stacking, and electrostatic interactions. The structurally optimized CT102s present a novel strategy for the treatment of hepatocellular carcinoma. The gapmer CT102MOE5 and conjugate Glu-CT102MOE5 showed superior antiproliferation and IGF1R mRNA suppression effects at 100 nM in vitro and achieved greater efficacy at a lower dose and administration frequency in vivo. Combined transcriptome and proteome analyses revealed that additional associated targets and functional regulations might simultaneously exist in ASO therapy. These results showed that a combination of lipid encapsulation and structural optimization in the delivery of oligonucleotide drugs has favorable prospects for clinical application.
Collapse
Affiliation(s)
- Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Guan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
| | - Yujing Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huantong Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qianyi He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Valenzuela-Vallejo L, Sanoudou D, Mantzoros CS. Precision Medicine in Fatty Liver Disease/Non-Alcoholic Fatty Liver Disease. J Pers Med 2023; 13:830. [PMID: 37241000 PMCID: PMC10224312 DOI: 10.3390/jpm13050830] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, and is related to fatal and non-fatal liver, metabolic, and cardiovascular complications. Its non-invasive diagnosis and effective treatment remain an unmet clinical need. NAFLD is a heterogeneous disease that is most commonly present in the context of metabolic syndrome and obesity, but not uncommonly, may also be present without metabolic abnormalities and in subjects with normal body mass index. Therefore, a more specific pathophysiology-based subcategorization of fatty liver disease (FLD) is needed to better understand, diagnose, and treat patients with FLD. A precision medicine approach for FLD is expected to improve patient care, decrease long-term disease outcomes, and develop better-targeted, more effective treatments. We present herein a precision medicine approach for FLD based on our recently proposed subcategorization, which includes the metabolic-associated FLD (MAFLD) (i.e., obesity-associated FLD (OAFLD), sarcopenia-associated FLD (SAFLD, and lipodystrophy-associated FLD (LAFLD)), genetics-associated FLD (GAFLD), FLD of multiple/unknown causes (XAFLD), and combined causes of FLD (CAFLD) as well as advanced stage fibrotic FLD (FAFLD) and end-stage FLD (ESFLD) subcategories. These and other related advances, as a whole, are expected to enable not only improved patient care, quality of life, and long-term disease outcomes, but also a considerable reduction in healthcare system costs associated with FLD, along with more options for better-targeted, more effective treatments in the near future.
Collapse
Affiliation(s)
- Laura Valenzuela-Vallejo
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4(th) Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Christos S. Mantzoros
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02130, USA
| |
Collapse
|
7
|
GRP94 Inhabits the Immortalized Porcine Hepatic Stellate Cells Apoptosis under Endoplasmic Reticulum Stress through Modulating the Expression of IGF-1 and Ubiquitin. Int J Mol Sci 2022; 23:ijms232214059. [PMID: 36430538 PMCID: PMC9694842 DOI: 10.3390/ijms232214059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) is closely related to the occurrence and progression of metabolic liver disease. The treatment targeting glucose-regulated protein 94 (GRP94) for liver disease has gotten much attention, but the specific effect of GRP94 on hepatocyte apoptosis is still unclear. So far, all the studies on GRP94 have been conducted in mice or rats, and little study has been reported on pigs, which share more similarities with humans. In this study, we used low-dose (LD) and high-dose (HD) tunicamycin (TM) to establish ERS models on piglet livers and immortalized porcine hepatic stellate cells (HSCs). On the piglet ERS model we found that ERS could significantly (p < 0.01) stimulate the secretion and synthesis of insulin-like growth factor (IGF-1), IGF-1 receptor (IGF-1R), and IGF-binding protein (IGFBP)-1 and IGFBP-3; however, with the increase in ERS degree, the effect of promoting secretion and synthesis significantly (p < 0.01) decreased. In addition, the ubiquitin protein and ubiquitination-related gene were significantly increased (p < 0.05) in the LD group compared with the vehicle group. The protein level of Active-caspase 3 was significantly increased (p < 0.01) in the HD group, however, the TUNEL staining showed there was no significant apoptosis in the piglet liver ERS model. To explore the biofunction of ER chaperone GRP94, we used shRNA to knock down the expression of GRP94 in porcine HSCs. Interestingly, on porcine HSCs, the knockdown of GRP94 significantly (p < 0.05) decreased the secretion of IGF-1, IGFBP-1 and IGFBP-3 under ERS, but had no significant effect on these under normal condition, and knockdown GRP94 had a significant (p < 0.01) effect on the UBE2E gene and ubiquitin protein from the analysis of two-way ANOVA. On porcine HSCs apoptosis, the knockdown of GRP94 increased the cell apoptosis in TUNEL staining, and the two-way ANOVA analysis shows that knockdown GRP94 had a significant (p < 0.01) effect on the protein levels of Bcl-2 and Caspase-3. For CCK-8 assay, ERS had a significant inhibitory(p < 0.05) effect on cell proliferation when treated with ERS for 24 h, and both knockdown GRP94 and ERS had a significant inhibitory(p < 0.05) effect on cell proliferation when treated with ERS for 36 h and 48 h. We concluded that GRP94 can protect the cell from ERS-induced apoptosis by promoting the IGF-1 system and ubiquitin. These results provide valuable information on the adaptive mechanisms of the liver under ERS, and could help identify vital functional genes to be applied as possible diagnostic biomarkers and treatments for diseases induced by ERS in the future.
Collapse
|