1
|
Lu X, Liu K, Zheng W, Zhang X, Shi J, Yu S, Gao Y, Feng H, Yu Z. Ferrochelatase Gene Variants Associated with Cholestasis in Adults: A Case Report. J Clin Transl Hepatol 2025; 13:173-177. [PMID: 39917467 PMCID: PMC11797824 DOI: 10.14218/jcth.2024.00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 02/09/2025] Open
Abstract
We reported a case of recurrent liver dysfunction in an adult patient with a history of abnormal liver enzymes persisting for over ten years. The primary abnormalities included elevated levels of gamma-glutamyl transferase and alkaline phosphatase. Despite conducting a series of extensive etiological tests to identify common causes of liver disease, the diagnosis remained unclear. However, whole-exome next-generation sequencing revealed a homozygous intronic mutation in the ferrochelatase gene (c.315-48T>C), which may be associated with the patient's cholestasis.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kun Liu
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenlan Zheng
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Shi
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shihan Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Minder AE, Granata F, van Breemen F, Schneider-Yin X, Minder EI, Saleh L, Barman-Aksözen J. Long-term iron supplementation in four patients with X-linked erythropoietic protoporphyria: associations with serum proteins and erythrocyte protoporphyrin levels-a single-centre retrospective study. Front Mol Biosci 2025; 12:1509803. [PMID: 40017630 PMCID: PMC11864907 DOI: 10.3389/fmolb.2025.1509803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/16/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction X-linked erythropoietic protoporphyria (XLEPP) is an ultra-rare inborn error of the heme biosynthesis characterised by the accumulation of large amounts of protoporphyrin IX (PPIX) and zinc-protoporphyrin in the erythrocytes. PPIX absorbs the energy of the visible light range and upon exposure causes painful phototoxic reactions and tissue damage. In addition, PPIX is excreted via the liver and bile, and can induce liver failure that requires life-saving liver transplantation. Case reports and data from a limited number of patients enrolled in a prospective study indicate that supplementation with iron, a co-substrate of the heme biosynthesis, can decrease blood PPIX concentrations and improve liver damage and photosensitivity in patients with XLEPP. However, long-term data on safety and effectiveness of iron supplementation in XLEPP to support this treatment strategy is limited. Methode Here, we report the experience and long-term effects over up to 8 years of iron supplementation of the four patients with XLEPP in the Swiss cohort. Results Our study shows that iron supplementation was safe and effective in lowering blood PPIX concentrations in our patients in the long term. Discussion However, monitoring for adequate dosing and long-term effects is advisable and a standardisation of treatment protocols and international best practice guidelines are needed.
Collapse
Affiliation(s)
- Anna-Elisabeth Minder
- Division of Endocrinology, Diabetology, and Porphyria, Stadtspital Zürich Triemli, Zurich, Switzerland
- Swiss Reference Centre for Porphyrias, Stadtspital Zürich, Triemli, Zurich, Switzerland
| | - Francesca Granata
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, S.C Medicina ad Indirizzo Metabolico, Milano, Italy
| | - Franziska van Breemen
- Swiss Reference Centre for Porphyrias, Stadtspital Zürich, Triemli, Zurich, Switzerland
- Institute of Laboratory Medicine, Stadtspital Zürich, Triemli, Zurich, Switzerland
| | - Xiaoye Schneider-Yin
- Swiss Reference Centre for Porphyrias, Stadtspital Zürich, Triemli, Zurich, Switzerland
- Institute of Laboratory Medicine, Stadtspital Zürich, Triemli, Zurich, Switzerland
| | - Elisabeth I. Minder
- Division of Endocrinology, Diabetology, and Porphyria, Stadtspital Zürich Triemli, Zurich, Switzerland
- Swiss Reference Centre for Porphyrias, Stadtspital Zürich, Triemli, Zurich, Switzerland
| | - Lanja Saleh
- Swiss Reference Centre for Porphyrias, Stadtspital Zürich, Triemli, Zurich, Switzerland
- Institute of Laboratory Medicine, Stadtspital Zürich, Triemli, Zurich, Switzerland
| | - Jasmin Barman-Aksözen
- Swiss Reference Centre for Porphyrias, Stadtspital Zürich, Triemli, Zurich, Switzerland
- Institute of Laboratory Medicine, Stadtspital Zürich, Triemli, Zurich, Switzerland
- Division of Metabolism and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
- University Research Priority Program “ITINERARE – Innovative Therapies in Rare Diseases”, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Frawley R, Johnson VJ, Burleson GR, Shockley KR, Cesta MF, Travlos G, Cora M, Roberts G, Germolec D. Evaluation of immunotoxicity of sodium metavanadate following drinking water exposure in female B6C3F1/N mice in a 28-day study. J Appl Toxicol 2023; 43:1686-1701. [PMID: 37403832 DOI: 10.1002/jat.4508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023]
Abstract
Sodium metavanadate (NaVO3 ) is a pentavalent vanadium compound used in the metal industry and dietary supplements; human exposure occurs through inhalation of fumes and dust and ingestion of NaVO3 -containing products. The objective of this study was to assess the potential immunotoxicity of NaVO3 . Female B6C3F1/N mice were exposed to 0-500 ppm NaVO3 in drinking water for 28 days and evaluated for effects on immune cell populations and innate, cellular-mediated, and humoral-mediated immunity. There was a decreasing trend in body weight (BW) and BW gain in NaVO3 exposed mice, with a decrease (p ≤ 0.05) in BW gain at ≥250 ppm, relative to control. Conversely, increasing trends in spleen weights and an increase (p ≤ 0.05) in the spleen:BW ratio at ≥250 ppm NaVO3 were observed. NaVO3 exposure altered antibody production against sheep red blood cells (SRBC). Antibody forming cells (AFC)/106 spleen cells exhibited a decreasing trend, with a decrease (p ≤ 0.05) at 500 ppm NaVO3 , concurrent with an increase in percent B cells. NaVO3 had no effect on the serum anti-SRBC IgM antibody titers or anti-keyhole limpet hemocyanin antibody production. Exposure to NaVO3 decreased the percentage of natural killer cells at all dose levels (p ≤ 0.05), with no effect on the lytic activity. NaVO3 altered T-cell populations at 500 ppm but had no effect on T-cell proliferative responses or the lytic activity of cytotoxic T cells. Collectively, these data indicate that NaVO3 exposure can adversely affect the immune system by inducing alterations in humoral-mediated immunity, specifically the AFC response, with no effect on cell-mediated or innate immunity.
Collapse
Affiliation(s)
- Rachel Frawley
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Victor J Johnson
- Burleson Research Technologies, Inc, Morrisville, North Carolina, USA
| | - Gary R Burleson
- Burleson Research Technologies, Inc, Morrisville, North Carolina, USA
| | - Keith R Shockley
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Mark F Cesta
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Greg Travlos
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Michelle Cora
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Georgia Roberts
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Dori Germolec
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
4
|
Xue W, Jian W, Meng Y, Wang T, Cai L, Yu Y, Yu Y, Xia Z, Zhang C. Knockdown of SETD2 promotes erastin-induced ferroptosis in ccRCC. Cell Death Dis 2023; 14:539. [PMID: 37604811 PMCID: PMC10442429 DOI: 10.1038/s41419-023-06057-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/15/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and is associated with poor prognosis. The histone H3 lysine 36 methyltransferase SET-domain-containing 2 (SETD2) has been reported to be expressed at low levels and frequently mutated in ccRCC. Ferroptosis, a form of death distinct from apoptosis and necrosis, has been reported in recent years in renal cancer. However, the relationship between SETD2 and ferroptosis in renal cancer is not clear. Here, we demonstrated that SETD2 was expressed at low levels in ccRCC and was associated with poor prognosis. Moreover, we found that knockdown of SETD2 increased lipid peroxidation and Fe2+ levels in tumor cells, thereby increasing the sensitivity of erastin, a ferroptosis inducer. Mechanistically, histone H3 lysine 36 trimethylation (H3K36me3) which was catalyzed by SETD2, interacted with the promoter of ferrochelatase (FECH) to regulate its transcription and ferroptosis-related signaling pathways. In conclusion, the presesnt study revealed that knockdown of the epigenetic molecule, SETD2, significantly increases the sensitivity of ferroptosis inducers which promotes tumor cell death, thereby indicating that SETD2 may be a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Wei Xue
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Wengang Jian
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yuyang Meng
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Tengda Wang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Licheng Cai
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yongchun Yu
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yipeng Yu
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhinan Xia
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Cheng Zhang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Department of Urology, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
5
|
Leaf RK, Dickey AK. How I treat erythropoietic protoporphyria and X-linked protoporphyria. Blood 2023; 141:2921-2931. [PMID: 36898083 PMCID: PMC10646811 DOI: 10.1182/blood.2022018688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Erythropoietic protoporphyria (EPP) is an inherited cutaneous porphyria caused by reduced expression of ferrochelatase, the enzyme that catalyzes the final step in heme biosynthesis. The resultant accumulation of protoporphyrin IX leads to severe, painful cutaneous photosensitivity, as well as potentially life-threatening liver disease in a small percentage of patients. X-linked protoporphyria (XLP) is clinically similar to EPP but results from increased activity of δ-aminolevulinic acid synthase 2, the first step in heme biosynthesis in the bone marrow, and also causes protoporphyrin accumulation. Although historically the management of EPP and XLP (collectively termed protoporphyria) centered around avoidance of sunlight, novel therapies have recently been approved or are in development, which will alter the therapeutic landscape for these conditions. We present 3 patient cases, highlighting key treatment considerations in patients with protoporphyria, including (1) approach to photosensitivity, (2) managing iron deficiency in protoporphyria, and (3) understanding hepatic failure in protoporphyria.
Collapse
Affiliation(s)
- Rebecca Karp Leaf
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Amy K. Dickey
- Harvard Medical School, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
6
|
Ricci A, Di Betto G, Bergamini E, Buzzetti E, Corradini E, Ventura P. Iron Metabolism in the Disorders of Heme Biosynthesis. Metabolites 2022; 12:819. [PMID: 36144223 PMCID: PMC9505951 DOI: 10.3390/metabo12090819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
Given its remarkable property to easily switch between different oxidative states, iron is essential in countless cellular functions which involve redox reactions. At the same time, uncontrolled interactions between iron and its surrounding milieu may be damaging to cells and tissues. Heme-the iron-chelated form of protoporphyrin IX-is a macrocyclic tetrapyrrole and a coordination complex for diatomic gases, accurately engineered by evolution to exploit the catalytic, oxygen-binding, and oxidoreductive properties of iron while minimizing its damaging effects on tissues. The majority of the body production of heme is ultimately incorporated into hemoglobin within mature erythrocytes; thus, regulation of heme biosynthesis by iron is central in erythropoiesis. Additionally, heme is a cofactor in several metabolic pathways, which can be modulated by iron-dependent signals as well. Impairment in some steps of the pathway of heme biosynthesis is the main pathogenetic mechanism of two groups of diseases collectively known as porphyrias and congenital sideroblastic anemias. In porphyrias, according to the specific enzyme involved, heme precursors accumulate up to the enzyme stop in disease-specific patterns and organs. Therefore, different porphyrias manifest themselves under strikingly different clinical pictures. In congenital sideroblastic anemias, instead, an altered utilization of mitochondrial iron by erythroid precursors leads to mitochondrial iron overload and an accumulation of ring sideroblasts in the bone marrow. In line with the complexity of the processes involved, the role of iron in these conditions is then multifarious. This review aims to summarise the most important lines of evidence concerning the interplay between iron and heme metabolism, as well as the clinical and experimental aspects of the role of iron in inherited conditions of altered heme biosynthesis.
Collapse
Affiliation(s)
- Andrea Ricci
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Giada Di Betto
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elisa Bergamini
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elena Buzzetti
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elena Corradini
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Paolo Ventura
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
7
|
Granata F, Brancaleoni V, Barman-Aksözen J, Scopetti M, De Luca G, Fustinoni S, Motta I, Di Pierro E, Graziadei G. Heme Biosynthetic Gene Expression Analysis With dPCR in Erythropoietic Protoporphyria Patients. Front Physiol 2022; 13:886194. [PMID: 35923227 PMCID: PMC9340544 DOI: 10.3389/fphys.2022.886194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The heme biosynthesis (HB) involves eight subsequent enzymatic steps. Erythropoietic protoporphyria (EPP) is caused by loss-of-function mutations in the ferrochelatase (FECH) gene, which in the last HB step inserts ferrous iron into protoporphyrin IX (PPIX) to form heme.Aim and method: The aim of this work was to for the first time analyze the mRNA expression of all HB genes in peripheral blood samples of patients with EPP having the same genotype FECH c.[215dupT]; [315-48T > C] as compared to healthy controls by highly sensitive and specific digital PCR assays (dPCR).Results: We confirmed a decreased FECH mRNA expression in patients with EPP. Further, we found increased ALAS2 and decreased ALAS1, CPOX, PPOX and HMBS mRNA expression in patients with EPP compared to healthy controls. ALAS2 correlated with FECH mRNA expression (EPP: r = 0.63, p = 0.03 and controls: r = 0.68, p = 0.02) and blood parameters like PPIX (EPP: r = 0.58 p = 0.06).Conclusion: Our method is the first that accurately quantifies HB mRNA from blood samples with potential applications in the monitoring of treatment effects of mRNA modifying therapies in vivo, or investigation of the HB pathway and its regulation. However, our findings should be studied in separated blood cell fractions and on the enzymatic level.
Collapse
Affiliation(s)
- Francesca Granata
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
- *Correspondence: Francesca Granata,
| | - Valentina Brancaleoni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| | - Jasmin Barman-Aksözen
- Department of Medical Institutes, Institute of Laboratory Medicine, Stadtspital Zürich, Zürich, Switzerland
| | | | - Giacomo De Luca
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| | - Silvia Fustinoni
- EPIGET—Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.S Tossicologia, Università degli Studi di Milano, Milan, Italy
| | - Irene Motta
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Elena Di Pierro
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| | - Giovanna Graziadei
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, U.O.C. Medicina Generale, Milano, Italy
| |
Collapse
|