1
|
Wise TJ, Ott ME, Joseph MS, Welsby IJ, Darrow CC, McMahon TJ. Modulation of the allosteric and vasoregulatory arms of erythrocytic oxygen transport. Front Physiol 2024; 15:1394650. [PMID: 38915775 PMCID: PMC11194670 DOI: 10.3389/fphys.2024.1394650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 06/26/2024] Open
Abstract
Efficient distribution of oxygen (O2) to the tissues in mammals depends on the evolved ability of red blood cell (RBC) hemoglobin (Hb) to sense not only O2 levels, but metabolic cues such as pH, PCO2, and organic phosphates, and then dispense or take up oxygen accordingly. O2 delivery is the product of not only oxygen release from RBCs, but also blood flow, which itself is also governed by vasoactive molecular mediators exported by RBCs. These vascular signals, including ATP and S-nitrosothiols (SNOs) are produced and exported as a function of the oxygen and metabolic milieu, and then fine-tune peripheral metabolism through context-sensitive vasoregulation. Emerging and repurposed RBC-oriented therapeutics can modulate either or both of these allosteric and vasoregulatory activities, with a single molecule or other intervention influencing both arms of O2 transport in some cases. For example, organic phosphate repletion of stored RBCs boosts the negative allosteric effector 2,3 biphosphoglycerate (BPG) as well as the anti-adhesive molecule ATP. In sickle cell disease, aromatic aldehydes such as voxelotor can disfavor sickling by increasing O2 affinity, and in newer generations, these molecules have been coupled to vasoactive nitric oxide (NO)-releasing adducts. Activation of RBC pyruvate kinase also promotes a left shift in oxygen binding by consuming and lowering BPG, while increasing the ATP available for cell health and export on demand. Further translational and clinical investigation of these novel allosteric and/or vasoregulatory approaches to modulating O2 transport are expected to yield new insights and improve the ability to correct or compensate for anemia and other O2 delivery deficits.
Collapse
Affiliation(s)
- Thomas J. Wise
- Duke University School of Medicine, Durham, NC, United States
| | - Maura E. Ott
- Duke University School of Medicine, Durham, NC, United States
| | - Mahalah S. Joseph
- Duke University School of Medicine, Durham, NC, United States
- Florida International University School of Medicine, Miami, FL, United States
| | - Ian J. Welsby
- Duke University School of Medicine, Durham, NC, United States
| | - Cole C. Darrow
- Duke University School of Medicine, Durham, NC, United States
| | - Tim J. McMahon
- Duke University School of Medicine, Durham, NC, United States
- Durham VA Health Care System, Durham, NC, United States
| |
Collapse
|
2
|
Sherstyukova E, Sergunova V, Kandrashina S, Chernysh A, Inozemtsev V, Lomakina G, Kozlova E. Red Blood Cell Storage with Xenon: Safe or Disruption? Cells 2024; 13:411. [PMID: 38474375 PMCID: PMC10930635 DOI: 10.3390/cells13050411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Xenon, an inert gas commonly used in medicine, has been considered as a potential option for prolonged preservation of donor packed red blood cells (pRBCs) under hypoxic conditions. This study aimed to investigate how xenon affects erythrocyte parameters under prolonged storage. In vitro model experiments were performed using two methods to create hypoxic conditions. In the first method, xenon was introduced into bags of pRBCs which were then stored for 42 days, while in the second method, xenon was added to samples in glass tubes. The results of our experiment showed that the presence of xenon resulted in notable alterations in erythrocyte morphology, similar to those observed under standard storage conditions. For pRBC bags, hemolysis during storage with xenon exceeded the acceptable limit by a factor of six, whereas the closed-glass-tube experiment showed minimal hemolysis in samples exposed to xenon. Notably, the production of deoxyhemoglobin was specific to xenon exposure in both cell suspension and hemolysate. However, this study did not provide evidence for the purported protective properties of xenon.
Collapse
Affiliation(s)
- Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Snezhanna Kandrashina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Aleksandr Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Vladimir Inozemtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia
| | - Galina Lomakina
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Elena Kozlova
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
3
|
Kozlova E, Sherstyukova E, Sergunova V, Grechko A, Kuzovlev A, Lyapunova S, Inozemtsev V, Kozlov A, Chernysh A. Atomic Force Microscopy and High-Resolution Spectrophotometry for Study of Anoxemia and Normoxemia in Model Experiment In Vitro. Int J Mol Sci 2023; 24:11043. [PMID: 37446221 PMCID: PMC10341442 DOI: 10.3390/ijms241311043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The oxygen content in the blood may decrease under the influence of various physicochemical factors and different diseases. The state of hypoxemia is especially dangerous for critically ill patients. In this paper, we describe and analyze the changes in the characteristics of red blood cells (RBCs) with decreasing levels of oxygen in the RBC suspension from normoxemia to hypoxemia/anoxemia in an in vitro model experiment. The RBCs were stored in hypoxemia/anoxemia and normoxemia conditions in closed and open tubes correspondingly. For the quantitative study of RBC parameter changes, we used atomic force microscopy, digital spectrophotometry, and nonlinear curve fitting of the optical spectra. In both closed and open tubes, at the end of the storage period by day 29, only 2% of discocytes remained, and mainly irreversible types, such as microspherocytes and ghosts, were observed. RBC hemolysis occurred at a level of 25-30%. Addition of the storage solution, depending on the concentration, changed the influence of hypoxemia on RBCs. The reversibility of the change in hemoglobin derivatives was checked. Based on the experimental data and model approach, we assume that there is an optimal level of hypoxemia at which the imbalance between the oxidative and antioxidant systems, the rate of formation of reactive oxygen species, and, accordingly, the disturbances in RBCs, will be minimal.
Collapse
Affiliation(s)
- Elena Kozlova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Faculty of Physics, Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina Sherstyukova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Viktoria Sergunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
| | - Andrey Grechko
- Administration, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (A.G.); (A.K.)
| | - Artem Kuzovlev
- Administration, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (A.G.); (A.K.)
| | - Snezhanna Lyapunova
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
| | - Vladimir Inozemtsev
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
| | - Aleksandr Kozlov
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Aleksandr Chernysh
- Laboratory of Biophysics of Cell Membranes under Critical State, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.K.); (E.S.); (V.S.); (V.I.); (A.C.)
| |
Collapse
|