1
|
Salagre D, Navarro-Alarcón M, González LG, Elrayess MA, Villalón-Mir M, Haro-López R, Agil A. Melatonin Ameliorates Organellar Calcium Homeostasis, Improving Endoplasmic Reticulum Stress-Mediated Apoptosis in the Vastus Lateralis Muscle of Both Sexes of Obese Diabetic Rats. Antioxidants (Basel) 2024; 14:16. [PMID: 39857351 PMCID: PMC11762543 DOI: 10.3390/antiox14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Endoplasmic reticulum (ER) stress is a crucial factor in the progression of obesity-related type 2 diabetes (diabesity), contributing to skeletal muscle (SKM) dysfunction, calcium imbalance, metabolic inflexibility, and muscle atrophy. The ER and mitochondria together regulate intracellular calcium levels, and melatonin, a natural compound with antioxidant properties, may alleviate these challenges. Our previous research showed that melatonin raises intracellular calcium and preserves muscle structure by enhancing mitochondrial function in obese diabetic rats. This study further explores melatonin's potential to reduce ER stress in the vastus lateralis (VL) muscle by modulating the unfolded protein response (UPR) and restoring calcium levels disrupted by diabesity. Five-week-old Zücker diabetic fatty (ZDF) rats and lean littermates of both sexes were divided into control and melatonin-treated groups (10 mg/kg/day for 12 weeks). Flame atomic absorption spectrometry results showed that melatonin restored VL intraorganellar calcium homeostasis, increasing calcium levels in mitochondria and reducing them in the ER by raising the activity and expression of calcium transporters in both sexes of ZDF rats. Melatonin also decreased ER stress markers (GRP78, ATF6, IRE1α, and PERK) and reduced pro-apoptosis markers (Bax, Bak, P-JNK, cleaved caspase 3 and 9) while increasing Bcl2 levels and melatonin receptor 2 (MT2) expression. These findings suggest that melatonin may protect against muscle atrophy in obese and diabetic conditions by mitigating ER stress and calcium imbalance, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Diego Salagre
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.); (L.G.G.); (R.H.-L.)
- Nutrition, Metabolism, Growth and Development Group, BioHealth Institute Granada (ibs.GRANADA), 18012 Granada, Spain
- Neuroscience Institute “Federico Olóriz”, Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain
| | - Miguel Navarro-Alarcón
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (M.N.-A.); (M.V.-M.)
| | - Luis Gerardo González
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.); (L.G.G.); (R.H.-L.)
- Bola de Oro Primary Care Health Center, Sanitary District of Granada, Andalusian Health Services (SAS), 18008 Granada, Spain
| | - Mohamed A. Elrayess
- Biomedical Research Center, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Marina Villalón-Mir
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (M.N.-A.); (M.V.-M.)
| | - Rocío Haro-López
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.); (L.G.G.); (R.H.-L.)
| | - Ahmad Agil
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.); (L.G.G.); (R.H.-L.)
- Nutrition, Metabolism, Growth and Development Group, BioHealth Institute Granada (ibs.GRANADA), 18012 Granada, Spain
- Neuroscience Institute “Federico Olóriz”, Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain
| |
Collapse
|
2
|
Simon-Szabó L, Lizák B, Sturm G, Somogyi A, Takács I, Németh Z. Molecular Aspects in the Development of Type 2 Diabetes and Possible Preventive and Complementary Therapies. Int J Mol Sci 2024; 25:9113. [PMID: 39201799 PMCID: PMC11354764 DOI: 10.3390/ijms25169113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The incidence of diabetes, including type 2 diabetes (T2DM), is increasing sharply worldwide. To reverse this, more effective approaches in prevention and treatment are needed. In our review, we sought to summarize normal insulin action and the pathways that primarily influence the development of T2DM. Normal insulin action involves mitogenic and metabolic pathways, as both are important in normal metabolic processes, regeneration, etc. However, through excess energy, both can be hyperactive or attenuated/inactive leading to disturbances in the cellular and systemic regulation with the consequence of cellular stress and systemic inflammation. In this review, we detailed the beneficial molecular changes caused by some important components of nutrition and by exercise, which act in the same molecular targets as the developed drugs, and can revert the damaged pathways. Moreover, these induce entire networks of regulatory mechanisms and proteins to restore unbalanced homeostasis, proving their effectiveness as preventive and complementary therapies. These are the main steps for success in prevention and treatment of developed diseases to rid the body of excess energy, both from stored fats and from overnutrition, while facilitating fat burning with adequate, regular exercise in healthy people, and together with necessary drug treatment as required in patients with insulin resistance and T2DM.
Collapse
Affiliation(s)
- Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Beáta Lizák
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Gábor Sturm
- Directorate of Information Technology Basic Infrastructure and Advanced Applications, Semmelweis University, Üllői út 78/b, 1082 Budapest, Hungary;
| | - Anikó Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Baross u., 1085 Budapest, Hungary;
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| | - Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| |
Collapse
|
3
|
Kruchinina MV, Osipenko MF, Shestov AA, Parulikova MV. Fatty acid composition of blood serum and erythrocyte membranes in men with steatosis and steatohepatitis with normal transaminase activity. SECHENOV MEDICAL JOURNAL 2024; 15:48-60. [DOI: 10.47093/2218-7332.2024.15.2.48-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aim. To study the characteristics of the fatty acid (FA) profi le of blood serum and erythrocyte membranes in patients with two forms of fatty liver disease (metabolic + alcoholic): steatosis and steatohepatitis with normal transaminase activity.Materials and methods. We examined 33 men (50.7 ± 9.6 years) with fatty liver disease (metabolic and alcoholic) with fi brosis F ≤ 1 (FibroTest). According to the ActiTest results, patients were divided into groups of steatosis – with minimal (A0–1) activity (n = 17) and steatohepatitis – with moderate/severe (A2–3) necroinfl ammatory activity (n = 16). The FA composition of blood serum and erythrocyte membranes was studied using gas chromatography/mass spectrometry Agilent 7000B (Agilent Technologies, Inc., USA). Methods of unpaired statistics using volcano plot and discriminant analysis based on orthogonal least squares (Orthogonal Partial Least Squares Discriminant Analysis, OPLS-DA), ROC analysis were applied.Results. Volcano plot analysis showed that in patients with fatty liver disease (metabolic and alcoholic) with normal transaminase activity, serum levels of stearic C18:0 (p = 0.016), arachidic C20:0 (p = 0.023), ratio saturated / polyunsaturated fatty acids (PUFA) (p = 0.001) were statistically signifi cantly higher in the steatohepatitis group compared with the steatosis group. The total content in the blood serum of all PUFA (p = 0.003), margaric C17:0 (p = 0.011), the sum of two omega-3 PUFA – eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3) (p = 0.04), the total content of all omega-3 PUFA (p = 0.042) were statistically signifi cantly lower in patients with steatohepatitis. OPLS-DA demonstrated fairly accurate separation of steatohepatitis and steatosis using individual FA and their ratios. When individual FA and their ratios were included in the analysis, a model was obtained with AUC = 0.827 (95% confi dence interval 0.499–1.0), sensitivity 82.2% and specifi city 80.7%.Conclusion. FA in blood serum and erythrocyte membranes appear to be promising biomarkers of steatohepatitis with normal levels of transaminases.
Collapse
Affiliation(s)
- M. V. Kruchinina
- Research Institute of Therapy and Preventive Medicine – branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State Medical University
| | | | - A. A. Shestov
- Perelman School of Medicine, University of Pennsylvania
| | - M. V. Parulikova
- Research Institute of Therapy and Preventive Medicine – branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| |
Collapse
|
4
|
Xu S, Lu F, Gao J, Yuan Y. Inflammation-mediated metabolic regulation in adipose tissue. Obes Rev 2024; 25:e13724. [PMID: 38408757 DOI: 10.1111/obr.13724] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/04/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Chronic inflammation of adipose tissue is a prominent characteristic of many metabolic diseases. Lipid metabolism in adipose tissue is consistently dysregulated during inflammation, which is characterized by substantial infiltration by proinflammatory cells and high cytokine concentrations. Adipose tissue inflammation is caused by a variety of endogenous factors, such as mitochondrial dysfunction, reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, cellular senescence, ceramides biosynthesis and mediators of lipopolysaccharides (LPS) signaling. Additionally, the gut microbiota also plays a crucial role in regulating adipose tissue inflammation. Essentially, adipose tissue inflammation arises from an imbalance in adipocyte metabolism and the regulation of immune cells. Specific inflammatory signals, including nuclear factor-κB (NF-κB) signaling, inflammasome signaling and inflammation-mediated autophagy, have been shown to be involved in the metabolic regulation. The pathogenesis of metabolic diseases characterized by chronic inflammation (obesity, insulin resistance, atherosclerosis and nonalcoholic fatty liver disease [NAFLD]) and recent research regarding potential therapeutic targets for these conditions are also discussed in this review.
Collapse
Affiliation(s)
- Shujie Xu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Gao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yuan
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Liu W, He C, Li C, Ye S, Zhao J, Zhu C, Wang X, Ma Q, Li B. Natural compound Alternol actives multiple endoplasmic reticulum stress-responding pathways contributing to cell death. Front Pharmacol 2024; 15:1397116. [PMID: 38831880 PMCID: PMC11144888 DOI: 10.3389/fphar.2024.1397116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Background: Alternol is a small molecular compound isolated from the fermentation of a mutant fungus obtained from Taxus brevifolia bark. Our previous studies showed that Alternol treatment induced reactive oxygen species (ROS)-dependent immunogenic cell death. This study conducted a comprehensive investigation to explore the mechanisms involved in Alternol-induced immunogenic cell death. Methods: Prostate cancer PC-3, C4-2, and 22RV1 were used in this study. Alternol interaction with heat shock proteins (HSP) was determined using CETSA assay. Alternol-regulated ER stress proteins were assessed with Western blot assay. Extracellular adenosine triphosphate (ATP) was measured using ATPlite Luminescence Assay System. Results: Our results showed that Alternol interacted with multiple cellular chaperone proteins and increased their expression levels, including endoplasmic reticulum (ER) chaperone hypoxia up-regulated 1 (HYOU1) and heat shock protein 90 alpha family class B member 1 (HSP90AB1), as well as cytosolic chaperone heat shock protein family A member 8 (HSPA8). These data represented a potential cause of unfolded protein response (UPR) after Alternol treatment. Further investigation revealed that Alternol treatment triggered ROS-dependent (ER) stress responses via R-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α). The double-stranded RNA-dependent protein kinase (PKR) but not activating transcription factor 6 (ATF6) cascades, leading to ATF-3/ATF-4 activation, C/EBP-homologous protein (CHOP) overexpression, and X-box binding protein XBP1 splicing induction. In addition, inhibition of these ER stress responses cascades blunted Alternol-induced extracellular adenosine triphosphate (ATP) release, one of the classical hallmarks of immunogenic cell death. Conclusion: Taken together, our data demonstrate that Alternol treatment triggered multiple ER stress cascades, leading to immunogenic cell death.
Collapse
Affiliation(s)
- Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Chenchen He
- Department of Radiation Oncology, The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Changlin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shazhou Ye
- Translational Research Laboratory for Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiang Zhao
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Cunle Zhu
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiangwei Wang
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qi Ma
- Translational Research Laboratory for Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
6
|
Tawara W, Morisasa M, Mukai R, Suo R, Itoi S, Mori T, Goto-Inoue N. A lipidomics approach reveals novel phospholipid changes in palmitate-treated C2C12 myotubes. Lipids 2024; 59:55-63. [PMID: 38299442 DOI: 10.1002/lipd.12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a highly prevalent metabolic disorder. Insulin resistance and oxidative stress are associated with T2DM development. The hypothesis that patients with T2DM show excess accumulation of lipids, such as ceramides (Cers) and diacylglycerols (DAGs), in their skeletal muscles has been widely supported; however, detailed lipidomic data at the molecular species level are limited. Therefore, in this study, we aimed to investigate the in vitro dynamics of total lipids, including phospholipids (PLs), sphingolipids, and neutral lipids, in palmitic acid-induced insulin-resistant C2C12 skeletal muscle cells. Our data demonstrated that the profiles of not only Cers and DAGs but also those of PLs showed considerably differences after palmitate treatment. We found that PL synthesis reduced and PL degradation increased after palmitate treatment. These findings may aid in the development of treatments to ameliorate muscle dysfunction caused by lipid accumulation in muscles.
Collapse
Affiliation(s)
- Wakako Tawara
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Mizuki Morisasa
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Risa Mukai
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Rei Suo
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Shiro Itoi
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Tsukasa Mori
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Naoko Goto-Inoue
- Department of Marine Sciences, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
7
|
Al-Sayyar A, Hammad MM, Williams MR, Al-Onaizi M, Abubaker J, Alzaid F. Neurotransmitters in Type 2 Diabetes and the Control of Systemic and Central Energy Balance. Metabolites 2023; 13:384. [PMID: 36984824 PMCID: PMC10058084 DOI: 10.3390/metabo13030384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Efficient signal transduction is important in maintaining the function of the nervous system across tissues. An intact neurotransmission process can regulate energy balance through proper communication between neurons and peripheral organs. This ensures that the right neural circuits are activated in the brain to modulate cellular energy homeostasis and systemic metabolic function. Alterations in neurotransmitters secretion can lead to imbalances in appetite, glucose metabolism, sleep, and thermogenesis. Dysregulation in dietary intake is also associated with disruption in neurotransmission and can trigger the onset of type 2 diabetes (T2D) and obesity. In this review, we highlight the various roles of neurotransmitters in regulating energy balance at the systemic level and in the central nervous system. We also address the link between neurotransmission imbalance and the development of T2D as well as perspectives across the fields of neuroscience and metabolism research.
Collapse
Affiliation(s)
| | | | | | - Mohammed Al-Onaizi
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| | | | - Fawaz Alzaid
- Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Institut Necker Enfants Malades-INEM, Université Paris Cité, CNRS, INSERM, F-75015 Paris, France
| |
Collapse
|