1
|
Zhou J, Yu JZ, Zhu MY, Yang FX, Hao JP, He Y, Zhu XL, Hou ZC, Zhu F. Genome-Wide Association Analysis and Genetic Parameters for Egg Production Traits in Peking Ducks. Animals (Basel) 2024; 14:1891. [PMID: 38998005 PMCID: PMC11240742 DOI: 10.3390/ani14131891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024] Open
Abstract
Egg production traits are crucial in the poultry industry, including age at first egg (AFE), egg number (EN) at different stages, and laying rate (LR). Ducks exhibit higher egg production capacity than other poultry species, but the genetic mechanisms are still poorly understood. In this study, we collected egg-laying data of 618 Peking ducks from 22 to 66 weeks of age and genotyped them by whole-genome resequencing. Genetic parameters were calculated based on SNPs, and a genome-wide association study (GWAS) was performed for these traits. The SNP-based heritability of egg production traits ranged from 0.09 to 0.54. The GWAS identified nine significant SNP loci associated with AFE and egg number from 22 to 66 weeks. These loci showed that the corresponding alleles were positively correlated with a decrease in the traits. Moreover, three potential candidate genes (ENSAPLG00020011445, ENSAPLG00020012564, TMEM260) were identified. Functional enrichment analyses suggest that specific immune responses may have a critical impact on egg production capacity by influencing ovarian function and oocyte maturation processes. In conclusion, this study deepens the understanding of egg-laying genetics in Peking duck and provides a sound theoretical basis for future genetic improvement and genomic selection strategies in poultry.
Collapse
Affiliation(s)
- Jun Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiang-Zhou Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mei-Yi Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fang-Xi Yang
- Beijing Nankou Duck Breeding Technology Co., Ltd., Beijing 102202, China
| | - Jin-Ping Hao
- Beijing Nankou Duck Breeding Technology Co., Ltd., Beijing 102202, China
| | - Yong He
- Cherry Valley Breeding Technology Co., Ltd., Beijing 100088, China
| | - Xiao-Liang Zhu
- Cherry Valley Breeding Technology Co., Ltd., Beijing 100088, China
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Baier V, Paini A, Schaller S, Scanes CG, Bone AJ, Ebeling M, Preuss TG, Witt J, Heckmann D. A generic avian physiologically-based kinetic (PBK) model and its application in three bird species. ENVIRONMENT INTERNATIONAL 2022; 169:107547. [PMID: 36179644 DOI: 10.1016/j.envint.2022.107547] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Physiologically-based kinetic (PBK) models are effective tools for designing toxicological studies and conducting extrapolations to inform hazard characterization in risk assessment by filling data gaps and defining safe levels of chemicals. In the present work, a generic avian PBK model for male and female birds was developed using PK-Sim and MoBi from the Open Systems Pharmacology Suite (OSPS). The PBK model includes an ovulation model (egg development) to predict concentrations of chemicals in eggs from dietary exposure. The model was parametrized for chicken (Gallus gallus), bobwhite quail (Colinus virginianus) and mallard duck (Anas platyrhynchos) and was tested with nine chemicals for which in vivo studies were available. Time-concentration profiles of chemicals reaching tissues and egg compartment were simulated and compared to in vivo data. The overall accuracy of the PBK model predictions across the analyzed chemicals was good. Model simulations were found to be in the range of 22-79% within a 3-fold and 41-89% were within 10- fold deviation of the in vivo observed data. However, for some compounds scarcity of in-vivo data and inconsistencies between published studies allowed only a limited goodness of fit evaluation. The generic avian PBK model was developed following a "best practice" workflow describing how to build a PBK model for novel species. The credibility and reproducibility of the avian PBK models were scored by evaluation according to the available guidance documents from WHO (2010), and OECD (2021), to increase applicability, confidence and acceptance of these in silico models in chemical risk assessment.
Collapse
Affiliation(s)
- Vanessa Baier
- esqLABS GmbH, Hambierich 34, 26683 Saterland, Germany
| | - Alicia Paini
- esqLABS GmbH, Hambierich 34, 26683 Saterland, Germany
| | | | - Colin G Scanes
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States; Department of Biological Science, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Audrey J Bone
- Bayer Crop Science, Chesterfield, MO 63017, United States
| | | | | | | | | |
Collapse
|