1
|
Schierbauer J, Sanfilippo S, Grothoff A, Fehr U, Wachsmuth N, Voit T, Zimmermann P, Moser O. Effect of Fluid Intake on Acute Changes in Plasma Volume: A Randomized Controlled Crossover Pilot Trial. Metabolites 2024; 14:263. [PMID: 38786740 PMCID: PMC11123201 DOI: 10.3390/metabo14050263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Plasma volume (PV) undergoes constant and dynamic changes, leading to a large intra-day variability in healthy individuals. Hydration is known to induce PV changes; however, the response to the intake of osmotically different fluids is still not fully understood. In a randomized controlled crossover trial, 18 healthy individuals (10 females) orally received an individual amount of an isotonic sodium-chloride (ISO), Ringer (RIN), or glucose (GLU) solution. Hemoglobin mass (Hbmass) was determined with the optimized carbon monoxide re-breathing method. Fluid-induced changes in PV were subsequently calculated based on capillary hemoglobin concentration ([Hb]) and hematocrit (Hct) before and then every 10 minutes until 120 min (t0-120) after the fluid intake and compared to a control trial arm (CON), where no fluid was administered. Within GLU and CON trial arms, no statistically significant differences from baseline until t120 were found (p > 0.05). In the ISO trial arm, PV was significantly increased at t70 (+138 mL, p = 0.01), t80 (+191 mL, p < 0.01), and t110 (+182 mL, p = 0.01) when compared to t0. Moreover, PV in the ISO trial arm was significantly higher at t70 (p = 0.02), t110 (p = 0.04), and t120 (p = 0.01) when compared to the same time points in the CON trial arm. Within the RIN trial arm, PV was significantly higher between t70 and t90 (+183 mL, p = 0.01) and between t110 (+194 mL, p = 0.03) and t120 (+186 mL, p < 0.01) when compared to t0. These results demonstrated that fluids with a higher content of osmotically active particles lead to acute hemodilution, which is associated with a decrease in [Hb] and Hct. These findings underpin the importance of the hydration state on PV and especially on PV constituent levels in healthy individuals.
Collapse
Affiliation(s)
- Janis Schierbauer
- Division of Exercise Physiology and Metabolism, Bayreuth Centre of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (S.S.); (A.G.); (U.F.); (N.W.); (T.V.); (P.Z.); (O.M.)
| | - Sabrina Sanfilippo
- Division of Exercise Physiology and Metabolism, Bayreuth Centre of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (S.S.); (A.G.); (U.F.); (N.W.); (T.V.); (P.Z.); (O.M.)
| | - Auguste Grothoff
- Division of Exercise Physiology and Metabolism, Bayreuth Centre of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (S.S.); (A.G.); (U.F.); (N.W.); (T.V.); (P.Z.); (O.M.)
| | - Ulrich Fehr
- Division of Exercise Physiology and Metabolism, Bayreuth Centre of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (S.S.); (A.G.); (U.F.); (N.W.); (T.V.); (P.Z.); (O.M.)
| | - Nadine Wachsmuth
- Division of Exercise Physiology and Metabolism, Bayreuth Centre of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (S.S.); (A.G.); (U.F.); (N.W.); (T.V.); (P.Z.); (O.M.)
| | - Thomas Voit
- Division of Exercise Physiology and Metabolism, Bayreuth Centre of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (S.S.); (A.G.); (U.F.); (N.W.); (T.V.); (P.Z.); (O.M.)
| | - Paul Zimmermann
- Division of Exercise Physiology and Metabolism, Bayreuth Centre of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (S.S.); (A.G.); (U.F.); (N.W.); (T.V.); (P.Z.); (O.M.)
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Bayreuth Centre of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (S.S.); (A.G.); (U.F.); (N.W.); (T.V.); (P.Z.); (O.M.)
- Interdisciplinary Metabolic Medicine Trials Unit, Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
2
|
Guo M, Diaz-Canestro C, Ng MY, Yiu KH, Montero D. The Chinese cardiorespiratory and circulatory system at work in women and men: a case-control study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 43:100975. [PMID: 38058739 PMCID: PMC10696127 DOI: 10.1016/j.lanwpc.2023.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Background The physiology of prominent prognostic factors in the cardiorespiratory system remains unchartered in the world's largest ethnic group: Hans Chinese (HC). This study assessed and contrasted the fundamental variables in HC and European-American (EA) individuals. Methods Healthy HC and EA adults (n = 140, 43% ♀) closely matched by age, sex and physical activity were included. Body composition (DXA) and haematological variables (haemoglobin mass, blood volume (BV)) were measured at rest. Pulmonary O2 uptake (VO2) measurements along with cycle ergometry designed for accurate transthoracic echocardiography were implemented to assess cardiorespiratory structure/function up to peak effort. Findings HC presented with higher body fat and lower lean body mass (LBM) percentage than EA irrespective of sex (P ≤ 0.014). BV did not differ whereas blood haemoglobin concentration was lower in HC compared with EA, particularly in females (P = 0.009). Myocardial diastolic and overall function at rest was enhanced in HC versus EA (P < 0.001). During exercise, heart volumes and output per unit of body size did not differ between ethnicities, whereas larger heart volumes per unit of LBM were found in HC versus EA in females (P ≤ 0.003). At high exercise intensities, VO2 (-16%) and the arteriovenous O2 difference (-28%) were markedly reduced in HC compared with EA in females (P ≤ 0.024). In males, no physiological difference between HC and EA was observed during exercise. Interpretation Notwithstanding lower LBM, HC are characterised by similar BV and cardiac capacity but reduced peak VO2 than EA in females, partly explained by low ethnic-specific blood O2 carrying capacity. Funding Early Career Scheme (106210224, to D.M.) and Seed Fund (104006024, to D.M.).
Collapse
Affiliation(s)
- Meihan Guo
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Ming-Yen Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Diagnostic Radiology, HKU-Shenzhen Hospital and Li Ka Shing Faculty of Medicine, The University of Hong Kong, Shenzhen, Hong Kong, China
| | - Kai Hang Yiu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - David Montero
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Libin Cardiovascular Institute of Alberta, University of Calgary, Canada
| |
Collapse
|
3
|
Schmidt WFJ, Hoffmeister T, Wachsmuth NB, Byrnes WC. The effect of posture and exercise on blood CO kinetics during the optimized carbon monoxide rebreathing procedure. Scand J Clin Lab Invest 2023:1-8. [PMID: 37154842 DOI: 10.1080/00365513.2023.2204402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An indispensable precondition for the determination of hemoglobin mass (Hbmass) and blood volume by CO rebreathing is complete mixing of CO in the blood. The aim of this study was to demonstrate the kinetics of CO in capillary and venous blood in different body positions and during moderate exercise. Six young subjects (4 male, 2 female) performed three 2-min CO rebreathing tests in seated (SEA) & supine (SUP) positions as well as during moderate exercise (EX) on a bicycle ergometer. Before, during, and until 15 min after CO rebreathing cubital venous and capillary blood samples were collected simultaneously and COHb% was determined. COHb% kinetics were significantly slower in SEA than in SUP or EX. Identical COHb% in capillary and venous blood were reached in SEA after 5.0 ± 2.3 min, in SUP after 3.2 ± 1.3 min and in EX after 1.9 ± 1.2 min (EX vs. SEA p < .01, SUP vs. SEA p < .05). After 7th min, Hbmass did not differ between the resting positions (capillary: SEA 766 ± 217 g, SUP 761 ± 227 g; venous: SEA 759 ± 224 g, SUP 744 ± 207 g). Under exercise, however, a higher Hbmass (p < .05) was determined (capillary: 823 ± 221 g, venous: 804 ± 226 g). In blood, the CO mixing time in the supine position is significantly shorter than in the seated position. By the 6th minute complete mixing is achieved in either position giving similar Hbmass determinations. CO-rebreathing under exercise conditions, however, leads to ∼7% higher Hbmass values.
Collapse
Affiliation(s)
- Walter F J Schmidt
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, Bayreuth, Germany
- Division of Exercise Physiology & Metabolism, University of Bayreuth, Bayreuth, Germany
| | - Torben Hoffmeister
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, Bayreuth, Germany
| | - Nadine B Wachsmuth
- Division of Exercise Physiology & Metabolism, University of Bayreuth, Bayreuth, Germany
| | - William C Byrnes
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
4
|
Schierbauer J, Wolf A, Wachsmuth NB, Maassen N, Schmidt WFJ. Relationship between Blood Volume, Blood Lactate Quantity, and Lactate Concentrations during Exercise. Metabolites 2023; 13:metabo13050632. [PMID: 37233674 DOI: 10.3390/metabo13050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
We wanted to determine the influence of total blood volume (BV) and blood lactate quantity on lactate concentrations during incremental exercise. Twenty-six healthy, nonsmoking, heterogeneously trained females (27.5 ± 5.9 ys) performed an incremental cardiopulmonary exercise test on a cycle ergometer during which maximum oxygen uptake (V·O2max), lactate concentrations ([La-]) and hemoglobin concentrations ([Hb]) were determined. Hemoglobin mass and blood volume (BV) were determined using an optimised carbon monoxide-rebreathing method. V·O2max and maximum power (Pmax) ranged between 32 and 62 mL·min-1·kg-1 and 2.3 and 5.5 W·kg-1, respectively. BV ranged between 81 and 121 mL·kg-1 of lean body mass and decreased by 280 ± 115 mL (5.7%, p = 0.001) until Pmax. At Pmax, the [La-] was significantly correlated to the systemic lactate quantity (La-, r = 0.84, p < 0.0001) but also significantly negatively correlated to the BV (r = -0.44, p < 0.05). We calculated that the exercise-induced BV shifts significantly reduced the lactate transport capacity by 10.8% (p < 0.0001). Our results demonstrate that both the total BV and La- have a major influence on the resulting [La-] during dynamic exercise. Moreover, the blood La- transport capacity might be significantly reduced by the shift in plasma volume. We conclude, that the total BV might be another relevant factor in the interpretation of [La-] during a cardio-pulmonary exercise test.
Collapse
Affiliation(s)
- Janis Schierbauer
- Division of Exercise Physiology & Metabolism, University of Bayreuth, 95447 Bayreuth, Germany
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Alina Wolf
- Division of Exercise Physiology & Metabolism, University of Bayreuth, 95447 Bayreuth, Germany
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Nadine B Wachsmuth
- Division of Exercise Physiology & Metabolism, University of Bayreuth, 95447 Bayreuth, Germany
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Norbert Maassen
- Institute of Sports Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Walter F J Schmidt
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|