1
|
Pan CR, Knutson SD, Huth SW, MacMillan DWC. µMap proximity labeling in living cells reveals stress granule disassembly mechanisms. Nat Chem Biol 2025; 21:490-500. [PMID: 39215100 PMCID: PMC11868469 DOI: 10.1038/s41589-024-01721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Phase-separated condensates are membrane-less intracellular structures comprising dynamic protein interactions that organize essential biological processes. Understanding the composition and dynamics of these organelles advances our knowledge of cellular behaviors and disease pathologies related to granule dysregulation. In this study, we apply microenvironment mapping with a HaloTag-based platform (HaloMap) to characterize intracellular stress granule dynamics in living cells. After validating the robustness and sensitivity of this approach, we then profile the stress granule proteome throughout the formation and disassembly and under pharmacological perturbation. These experiments reveal several ubiquitin-related modulators, including the HECT (homologous to E6AP C terminus) E3 ligases ITCH and NEDD4L, as well as the ubiquitin receptor toll-interacting protein TOLLIP, as key mediators of granule disassembly. In addition, we identify an autophagy-related pathway that promotes granule clearance. Collectively, this work establishes a general photoproximity labeling approach for unraveling intracellular protein interactomes and uncovers previously unexplored regulatory mechanisms of stress granule dynamics.
Collapse
Affiliation(s)
- Chenmengxiao Roderick Pan
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
He SL, Wang X, Kim SI, Kong L, Liu A, Wang L, Wang Y, Shan L, He P, Jang JC. Modulation of stress granule dynamics by phosphorylation and ubiquitination in plants. iScience 2024; 27:111162. [PMID: 39569378 PMCID: PMC11576400 DOI: 10.1016/j.isci.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
The Arabidopsis tandem CCCH zinc finger 1 (TZF1) is an RNA-binding protein that plays a pivotal role in plant growth and stress response. In this report, we show that TZF1 contains two intrinsically disordered regions necessary for its localization to stress granules (SGs). TZF1 recruits mitogen-activated protein kinase (MAPK) signaling components and an E3 ubiquitin ligase KEEP-ON-GOING (KEG) to SGs. TZF1 is phosphorylated by MPKs and ubiquitinated by KEG. Using a high throughput Arabidopsis protoplasts transient expression system, mutant studies reveal that the phosphorylation of specific residues plays differential roles in enhancing or reducing TZF1 SG assembly and protein-protein interaction with mitogen-activated kinase kinase 5 in SGs. Ubiquitination appears to play a positive role in TZF1 SG assembly, because mutations cause a reduction of typical SGs, while enhancing the assembly of large SGs encompassing the nucleus. Together, our results demonstrate that plant SG assembly is distinctively regulated by phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Siou-Luan He
- Department of Horticulture and Crop Science, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing 10093, China
| | - Sung-Il Kim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Liang Kong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Ailing Liu
- Department of Horticulture and Crop Science, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing 10093, China
| | - Ying Wang
- Plant Pathology Department and Plant Molecular Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Center for Applied Plant Sciences, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Xie Z, Zhao S, Tu Y, Liu E, Li Y, Wang X, Chen C, Zhai S, Qi J, Wu C, Wu H, Zhou M, Wang W. Proteasome resides in and dismantles plant heat stress granules constitutively. Mol Cell 2024; 84:3320-3335.e7. [PMID: 39173636 DOI: 10.1016/j.molcel.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/30/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Stress granules (SGs) are conserved reversible cytoplasmic condensates enriched with aggregation-prone proteins assembled in response to various stresses. How plants regulate SG dynamics is unclear. Here, we show that 26S proteasome is a stable component of SGs, promoting the overall clearance of SGs without affecting the molecular mobility of SG components. Increase in either temperature or duration of heat stress reduces the molecular mobility of SG marker proteins and suppresses SG clearance. Heat stress induces dramatic ubiquitylation of SG components and enhances the activities of SG-resident proteasomes, allowing the degradation of SG components even during the assembly phase. Their proteolytic activities enable the timely disassembly of SGs and secure the survival of plant cells during the recovery from heat stress. Therefore, our findings identify the cellular process that de-couples macroscopic dynamics of SGs from the molecular dynamics of its constituents and highlights the significance of the proteasomes in SG disassembly.
Collapse
Affiliation(s)
- Zhouli Xie
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China; Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Zhao
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Yuchen Tu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Enhui Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Ying Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Changtian Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Shuwei Zhai
- Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Qi
- Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengyun Wu
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Honghong Wu
- Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
4
|
Mimura M, Ono S, Somashekar H, Nonomura KI. Impact of protein domains on the MEL2 granule, a cytoplasmic ribonucleoprotein complex maintaining faithful meiosis progression in rice. THE NEW PHYTOLOGIST 2024; 243:2235-2250. [PMID: 39049570 DOI: 10.1111/nph.19968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Cytoplasmic ribonucleoprotein (RNP) granules are membraneless structures composed of various RNAs and proteins that play important roles in post-transcriptional regulation. While RNP granules are known to regulate the meiotic entry in some organisms, little is known about their roles in plants. In this study, we observed the cytoplasmic granular structures of rice RNA-binding protein MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2), which contributes to the control of meiotic entry timing, in leaf protoplasts and spore mother cells. We performed colocalization analysis with known cytoplasmic RNP factors, and domain deletion analysis to assess their impact on granule formation and meiosis progression. Conservation of MEL2 domains across plant species was also explored. Our results indicated that MEL2 granules colocalized with processing body and stress granule factors. The maintenance of granule properties modulated by LOTUS domain and the intrinsically disordered region (IDR) is essential for proper MEL2 function in meiosis progression. MEL2-like proteins widely found in plant kingdom conserved LOTUS domain followed by the IDR despite their diverse domain structures, suggesting the functional conservation of these domains among plant species. This study highlights the role of MEL2 granule dynamics and its impact on meiotic transition and progression.
Collapse
Affiliation(s)
- Manaki Mimura
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Seijiro Ono
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Harsha Somashekar
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
5
|
Lai CH, Ko KT, Fan PJ, Yu TA, Chang CF, Draczkowski P, Hsu STD. Structural insight into the ZFAND1-p97 interaction involved in stress granule clearance. J Biol Chem 2024; 300:107230. [PMID: 38537699 PMCID: PMC11047754 DOI: 10.1016/j.jbc.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024] Open
Abstract
Arsenite-induced stress granule (SG) formation can be cleared by the ubiquitin-proteasome system aided by the ATP-dependent unfoldase p97. ZFAND1 participates in this pathway by recruiting p97 to trigger SG clearance. ZFAND1 contains two An1-type zinc finger domains (ZF1 and ZF2), followed by a ubiquitin-like domain (UBL); but their structures are not experimentally determined. To shed light on the structural basis of the ZFAND1-p97 interaction, we determined the atomic structures of the individual domains of ZFAND1 by solution-state NMR spectroscopy and X-ray crystallography. We further characterized the interaction between ZFAND1 and p97 by methyl NMR spectroscopy and cryo-EM. 15N spin relaxation dynamics analysis indicated independent domain motions for ZF1, ZF2, and UBL. The crystal structure and NMR structure of UBL showed a conserved β-grasp fold homologous to ubiquitin and other UBLs. Nevertheless, the UBL of ZFAND1 contains an additional N-terminal helix that adopts different conformations in the crystalline and solution states. ZFAND1 uses the C-terminal UBL to bind to p97, evidenced by the pronounced line-broadening of the UBL domain during the p97 titration monitored by methyl NMR spectroscopy. ZFAND1 binding induces pronounced conformational heterogeneity in the N-terminal domain of p97, leading to a partial loss of the cryo-EM density of the N-terminal domain of p97. In conclusion, this work paved the way for a better understanding of the interplay between p97 and ZFAND1 in the context of SG clearance.
Collapse
Affiliation(s)
- Chih-Hsuan Lai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuang-Ting Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pei-Ju Fan
- High-Field Nuclear Magnetic Resonance Center, Academia Sinica, Taipei, Taiwan
| | - Tsun-Ai Yu
- High-Field Nuclear Magnetic Resonance Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Fon Chang
- High-Field Nuclear Magnetic Resonance Center, Academia Sinica, Taipei, Taiwan
| | | | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; International Institute for Sustainability With Knotted Chiral Meta Matter (SKCM(2)), Hiroshima University, Higashihiroshima, Japan.
| |
Collapse
|
6
|
Mori F, Yasui H, Miki Y, Kon T, Arai A, Kurotaki H, Tomiyama M, Wakabayashi K. Colocalization of TDP-43 and stress granules at the early stage of TDP-43 aggregation in amyotrophic lateral sclerosis. Brain Pathol 2024; 34:e13215. [PMID: 37793650 PMCID: PMC10901621 DOI: 10.1111/bpa.13215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
TDP-43 aggregates (skeins and round inclusions [RIs]) are frequent histopathological features of amyotrophic lateral sclerosis (ALS). We have shown that diffuse punctate cytoplasmic staining (DPCS) is the earliest pathologic manifestation of TDP-43 in ALS, corresponding to nonfibrillar TDP-43 located in the rough endoplasmic reticulum. Previous in vitro studies have suggested that TDP-43 inclusions may be derived from stress granules (SGs). Therefore, we investigated the involvement of SGs in the formation of TDP-43 inclusions. Formalin-fixed spinal cords of six ALS patients with a disease duration of less than 1 year (short duration), eight patients with a disease duration of 2-5 years (standard duration), and five normal controls were subjected to histopathological examination using antibodies against an SG marker, HuR. In normal controls, the cytoplasm of anterior horn cells was diffusely HuR-positive. In short-duration and standard-duration ALS, the number of HuR-positive anterior horn cells was significantly decreased relative to the controls. DPCS and RIs were more frequent in short-duration ALS than in standard-duration ALS. The majority of DPCS areas and a small proportion of RIs, but not skeins, were positive for HuR. Immunoelectron microscopy showed that ribosome-like granular structures in DPCS areas and RIs were labeled with anti-HuR, whereas skeins were not. These findings suggest that colocalization of TDP-43 and SGs occurs at the early stage of TDP-43 aggregation.
Collapse
Affiliation(s)
- Fumiaki Mori
- Department of NeuropathologyInstitute of Brain Science, Hirosaki University Graduate School of MedicineHirosakiJapan
| | - Hina Yasui
- Department of NeuropathologyInstitute of Brain Science, Hirosaki University Graduate School of MedicineHirosakiJapan
| | - Yasuo Miki
- Department of NeuropathologyInstitute of Brain Science, Hirosaki University Graduate School of MedicineHirosakiJapan
| | - Tomoya Kon
- Department of NeurologyInstitute of Brain Science, Hirosaki University Graduate School of MedicineHirosakiJapan
| | - Akira Arai
- Department of NeurologyAomori Prefectural Central HospitalAomoriJapan
| | | | - Masahiko Tomiyama
- Department of NeurologyInstitute of Brain Science, Hirosaki University Graduate School of MedicineHirosakiJapan
| | - Koichi Wakabayashi
- Department of NeuropathologyInstitute of Brain Science, Hirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
7
|
Wang Z, Zhang C, Fan C, Liu Y. Post-translational modifications in stress granule and their implications in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194989. [PMID: 37751804 DOI: 10.1016/j.bbagrm.2023.194989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Stress granules (SGs) arise as formations of mRNAs and proteins in response to translation initiation inhibition during stress. These dynamic compartments adopt a fluidic nature through liquid-liquid phase separation (LLPS), exhibiting a composition subject to constant change within cellular contexts. Research has unveiled an array of post-translational modifications (PTMs) occurring on SG proteins, intricately orchestrating SG dynamics. In the realm of neurodegenerative diseases, pathological mutant proteins congregate into insoluble aggregates alongside numerous SG proteins, manifesting resilience against disassembly. Specific PTMs conspicuously label these aggregates, designating them for subsequent degradation. The strategic manipulation of aberrant SGs via PTMs emerges as a promising avenue for therapeutic intervention. This review discerns recent strides in comprehending the impact of PTMs on LLPS behavior and the assembly/disassembly kinetics of SGs. By delving into the roles of PTMs in governing SG dynamics, we augment our cognizance of the molecular underpinnings of neurodegeneration. Furthermore, we offer invaluable insights into potential targets for therapeutic intervention in neurodegenerative afflictions, encompassing conditions like amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Zhangshun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chen'ang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengyu Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
8
|
Park S, Dahn R, Kurt E, Presle A, VanDenHeuvel K, Moravec C, Jambhekar A, Olukoga O, Shepherd J, Echard A, Blower M, Skop AR. The mammalian midbody and midbody remnant are assembly sites for RNA and localized translation. Dev Cell 2023; 58:1917-1932.e6. [PMID: 37552987 PMCID: PMC10592306 DOI: 10.1016/j.devcel.2023.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Long ignored as a vestigial remnant of cytokinesis, the mammalian midbody (MB) is released post-abscission inside large extracellular vesicles called MB remnants (MBRs). Recent evidence suggests that MBRs can modulate cell proliferation and cell fate decisions. Here, we demonstrate that the MB matrix is the site of ribonucleoprotein assembly and is enriched in mRNAs that encode proteins involved in cell fate, oncogenesis, and pluripotency, which we are calling the MB granule. Both MBs and post-abscission MBRs are sites of spatiotemporally regulated translation, which is initiated when nascent daughter cells re-enter G1 and continues after extracellular release. MKLP1 and ARC are necessary for the localization and translation of RNA in the MB dark zone, whereas ESCRT-III is necessary to maintain translation levels in the MB. Our work reveals a unique translation event that occurs during abscission and within a large extracellular vesicle.
Collapse
Affiliation(s)
- Sungjin Park
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Randall Dahn
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Elif Kurt
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Adrien Presle
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Kathryn VanDenHeuvel
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Cara Moravec
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Olushola Olukoga
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason Shepherd
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Arnaud Echard
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Michael Blower
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Ahna R Skop
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Fodder K, Murthy M, Rizzu P, Toomey CE, Hasan R, Humphrey J, Raj T, Lunnon K, Mill J, Heutink P, Lashley T, Bettencourt C. Brain DNA methylomic analysis of frontotemporal lobar degeneration reveals OTUD4 in shared dysregulated signatures across pathological subtypes. Acta Neuropathol 2023; 146:77-95. [PMID: 37149835 PMCID: PMC10261190 DOI: 10.1007/s00401-023-02583-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the neuropathology of a clinically, genetically and pathologically heterogeneous group of diseases, including frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP). Among the major FTLD pathological subgroups, FTLD with TDP-43 positive inclusions (FTLD-TDP) and FTLD with tau-positive inclusions (FTLD-tau) are the most common, representing about 90% of the cases. Although alterations in DNA methylation have been consistently associated with neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, little is known for FTLD and its heterogeneous subgroups and subtypes. The main goal of this study was to investigate DNA methylation variation in FTLD-TDP and FTLD-tau. We used frontal cortex genome-wide DNA methylation profiles from three FTLD cohorts (142 FTLD cases and 92 controls), generated using the Illumina 450K or EPIC microarrays. We performed epigenome-wide association studies (EWAS) for each cohort followed by meta-analysis to identify shared differentially methylated loci across FTLD subgroups/subtypes. In addition, we used weighted gene correlation network analysis to identify co-methylation signatures associated with FTLD and other disease-related traits. Wherever possible, we also incorporated relevant gene/protein expression data. After accounting for a conservative Bonferroni multiple testing correction, the EWAS meta-analysis revealed two differentially methylated loci in FTLD, one annotated to OTUD4 (5'UTR-shore) and the other to NFATC1 (gene body-island). Of these loci, OTUD4 showed consistent upregulation of mRNA and protein expression in FTLD. In addition, in the three independent co-methylation networks, OTUD4-containing modules were enriched for EWAS meta-analysis top loci and were strongly associated with the FTLD status. These co-methylation modules were enriched for genes implicated in the ubiquitin system, RNA/stress granule formation and glutamatergic synaptic signalling. Altogether, our findings identified novel FTLD-associated loci, and support a role for DNA methylation as a mechanism involved in the dysregulation of biological processes relevant to FTLD, highlighting novel potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Katherine Fodder
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Megha Murthy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Christina E Toomey
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Rahat Hasan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Towfique Raj
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Alector, Inc., South San Francisco, CA, USA
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
10
|
Hou XN, Tang C. The pros and cons of ubiquitination on the formation of protein condensates. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1084-1098. [PMID: 37294105 PMCID: PMC10423694 DOI: 10.3724/abbs.2023096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/19/2023] [Indexed: 06/10/2023] Open
Abstract
Ubiquitination, a post-translational modification that attaches one or more ubiquitin (Ub) molecules to another protein, plays a crucial role in the phase-separation processes. Ubiquitination can modulate the formation of membrane-less organelles in two ways. First, a scaffold protein drives phase separation, and Ub is recruited to the condensates. Second, Ub actively phase-separates through the interactions with other proteins. Thus, the role of ubiquitination and the resulting polyUb chains ranges from bystanders to active participants in phase separation. Moreover, long polyUb chains may be the primary driving force for phase separation. We further discuss that the different roles can be determined by the lengths and linkages of polyUb chains which provide preorganized and multivalent binding platforms for other client proteins. Together, ubiquitination adds a new layer of regulation for the flow of material and information upon cellular compartmentalization of proteins.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Chun Tang
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Center for Quantitate BiologyPKU-Tsinghua Center for Life ScienceAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
11
|
Herrera MG, Amundarain MJ, Santos J. Biophysical evaluation of the oligomerization and conformational properties of the N-terminal domain of TDP-43. Arch Biochem Biophys 2023; 737:109533. [PMID: 36740035 DOI: 10.1016/j.abb.2023.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
TDP-43 is an RNA-binding protein that presents four domains comprising an N-terminal region, two RNA recognition motifs and a C-terminal region. The N-terminal domain (NTD) has a relevant role in the oligomerization and splicing activity of TDP-43. In this work, we have expressed, purified and biophysically characterized the region that includes residues 1 to 102 that contains the nuclear localization signal (residues 80-102, NLS). Furthermore, we have evaluated the oligomerization equilibrium for this protein fragment. Also, we have determined changes in the tertiary structure and its stability in a broad range of pH values by means of different spectroscopic methods. Additionally, we compared this fragment with the one that lacks the NLS employing experimental and computational methods. Finally, we evaluated the motion of dimeric forms to get insights into the conformational flexibility of this TDP-43 module in an oligomeric state. Our results suggest that this domain has a conformational plasticity in the vicinity of the single tryptophan of this domain (Trp68), which is enhanced by the presence of the nuclear localization signal. All these results help to understand the molecular features of the NTD of TDP-43.
Collapse
Affiliation(s)
- Maria Georgina Herrera
- Faculty of Exact and Natural Sciences, Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina; Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Gebäude MA 2/143, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Maria Julia Amundarain
- Faculty of Chemistry, OCIII, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Javier Santos
- Faculty of Exact and Natural Sciences, Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
12
|
Molecular Investigations of Protein Aggregation in the Pathogenesis of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 24:ijms24010704. [PMID: 36614144 PMCID: PMC9820914 DOI: 10.3390/ijms24010704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder characterized by selective loss of lower and upper motor neurons (MNs) in the brain and spinal cord, resulting in paralysis and eventually death due to respiratory insufficiency. Although the fundamental physiological mechanisms underlying ALS are not completely understood, the key neuropathological hallmarks of ALS pathology are the aggregation and accumulation of ubiquitinated protein inclusions within the cytoplasm of degenerating MNs. Herein, we discuss recent insights into the molecular mechanisms that lead to the accumulation of protein aggregates in ALS. This will contribute to a better understanding of the pathophysiology of the disease and may open novel avenues for the development of therapeutic strategies.
Collapse
|
13
|
Hu R, Qian B, Li A, Fang Y. Role of Proteostasis Regulation in the Turnover of Stress Granules. Int J Mol Sci 2022; 23:ijms232314565. [PMID: 36498892 PMCID: PMC9741362 DOI: 10.3390/ijms232314565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
RNA-binding proteins (RBPs) and RNAs can form dynamic, liquid droplet-like cytoplasmic condensates, known as stress granules (SGs), in response to a variety of cellular stresses. This process is driven by liquid-liquid phase separation, mediated by multivalent interactions between RBPs and RNAs. The formation of SGs allows a temporary suspension of certain cellular activities such as translation of unnecessary proteins. Meanwhile, non-translating mRNAs may also be sequestered and stalled. Upon stress removal, SGs are disassembled to resume the suspended biological processes and restore the normal cell functions. Prolonged stress and disease-causal mutations in SG-associated RBPs can cause the formation of aberrant SGs and/or impair SG disassembly, consequently raising the risk of pathological protein aggregation. The machinery maintaining protein homeostasis (proteostasis) includes molecular chaperones and co-chaperones, the ubiquitin-proteasome system, autophagy, and other components, and participates in the regulation of SG metabolism. Recently, proteostasis has been identified as a major regulator of SG turnover. Here, we summarize new findings on the specific functions of the proteostasis machinery in regulating SG disassembly and clearance, discuss the pathological and clinical implications of SG turnover in neurodegenerative disorders, and point to the unresolved issues that warrant future exploration.
Collapse
Affiliation(s)
- Rirong Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beituo Qian
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration of Ministry of Education, Jinan University, Guangzhou 510632, China
- Correspondence: (A.L.); (Y.F.); Tel.: +86-21-6858-2510 (Y.F.)
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (A.L.); (Y.F.); Tel.: +86-21-6858-2510 (Y.F.)
| |
Collapse
|