1
|
Wang F, Li P, Yan X, Yue A, Xu J, Shao Y, Zhang K, Zhang Q, Li Y, Sun K. Novel therapeutic insights into pathological cardiac hypertrophy: tRF-16-R29P4PE regulates PACE4 and metabolic pathways. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119920. [PMID: 39947523 DOI: 10.1016/j.bbamcr.2025.119920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Pathological cardiac hypertrophy (PCH) is a complex condition with an incompletely understood pathogenesis. Emerging evidence suggests that transfer RNA-derived small RNAs (tsRNAs) may play a significant role in various cellular processes, yet their impact on PCH remains unexplored. In this study, we performed tsRNA sequencing on plasma samples from PCH patients and identified a marked decrease in the expression of tRNA-related fragment 16-R29P4PE (tRF-16-R29P4PE), a specific tsRNA fragment, with a diagnostic area under the curve value of 0.7750. Using Angiotensin II (Ang II)-stimulated H9c2 cardiomyocytes as an in vitro model and Sprague-Dawley rats as an in vivo model, we investigated the effects of tRF-16-R29P4PE minic/inhibitors and silencing of the paired basic amino acid cleaving system 4 (PACE4) gene. Our results demonstrated that modulating tRF-16-R29P4PE expression significantly reduced brain natriuretic peptide (BNP) and free fatty acid levels while enhancing ATP production, glucose levels, and mitochondrial membrane potential. These effects were accompanied by the downregulation of PACE4, hypoxia-inducible factor-1α (HIF-1α), glucose transporter-4 (GLUT-4), and medium-chain acyl-CoA dehydrogenase (MCAD), as well as the upregulation of peroxisome proliferator-activated receptor α (PPARα). Animal experiments revealed that tRF-16-R29P4PE minic improved cardiac function, reduced myocardial fibrosis, and mitigated metabolic disorders and mitochondrial damage. Furthermore, co-immunoprecipitation (Co-IP) and molecular docking assays confirmed a direct interaction between PACE4 and HIF-1α, and luciferase reporter assays identified PACE4 as a direct target of tRF-16-R29P4PE. By regulating the PACE4 and HIF-1α/PPARα signaling pathways, tRF-16-R29P4PE alleviates PCH, providing a promising molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Ping Li
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Xinxin Yan
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Anna Yue
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Jingyi Xu
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Yaqing Shao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Kaiyu Zhang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Qian Zhang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
2
|
Iring A, Baranyi M, Iring-Varga B, Mut-Arbona P, Gál ZT, Nagy D, Hricisák L, Varga J, Benyó Z, Sperlágh B. Blood oxygen regulation via P2Y12R expressed in the carotid body. Respir Res 2024; 25:61. [PMID: 38281036 PMCID: PMC10821555 DOI: 10.1186/s12931-024-02680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Peripheral blood oxygen monitoring via chemoreceptors in the carotid body (CB) is an integral function of the autonomic cardiorespiratory regulation. The presence of the purinergic P2Y12 receptor (P2Y12R) has been implicated in CB; however, the exact role of the receptor in O2 sensing and signal transduction is unknown. METHODS The presence of P2Y12R was established by immunoblotting, RT qPCR and immunohistochemistry. Primary glomus cells were used to assess P2Y12R function during hypoxia and hypercapnia, where monoamines were measured by HPLC; calcium signal was recorded utilizing OGB-1 and N-STORM Super-Resolution System. Ingravescent hypoxia model was tested in anaesthetized mice of mixed gender and cardiorespiratory parameters were recorded in control and receptor-deficient or drug-treated experimental animals. RESULTS Initially, the expression of P2Y12R in adult murine CB was confirmed. Hypoxia induced a P2Y12R-dependent release of monoamine transmitters from isolated CB cells. Receptor activation with the endogenous ligand ADP promoted release of neurotransmitters under normoxic conditions, while blockade disrupted the amplitude and duration of the intracellular calcium concentration. In anaesthetised mice, blockade of P2Y12R expressed in the CB abrogated the initiation of compensatory cardiorespiratory changes in hypoxic environment, while centrally inhibited receptors (i.e. microglial receptors) or receptor-deficiency induced by platelet depletion had limited influence on the physiological adjustment to hypoxia. CONCLUSIONS Peripheral P2Y12R inhibition interfere with the complex mechanisms of acute oxygen sensing by influencing the calcium signalling and the release of neurotransmitter molecules to evoke compensatory response to hypoxia. Prospectively, the irreversible blockade of glomic receptors by anti-platelet drugs targeting P2Y12Rs, propose a potential, formerly unrecognized side-effect to anti-platelet medications in patients with pulmonary morbidities.
Collapse
Affiliation(s)
- András Iring
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary.
- Institute of Translational Medicine, Semmelweis University, Budapest, 1094, Hungary.
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Bernadett Iring-Varga
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, 1085, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, 1085, Hungary
| | - Zsuzsanna T Gál
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Dorina Nagy
- Institute of Translational Medicine, Semmelweis University, Budapest, 1094, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, Hungarian Research Network, Semmelweis University (HUN-REN-SU), Budapest, 1094, Hungary
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, Budapest, 1094, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, Hungarian Research Network, Semmelweis University (HUN-REN-SU), Budapest, 1094, Hungary
| | - János Varga
- Department of Pulmonology, Faculty of Medicine, Semmelweis University, Budapest, 1083, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, 1094, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, Hungarian Research Network, Semmelweis University (HUN-REN-SU), Budapest, 1094, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, 1085, Hungary
| |
Collapse
|
3
|
Butani N, Toor K. The roles of peripheral chemoreflex and myocardial hypoxia in fetal heart rate decelerations: insights from a near-term fetal sheep study. J Physiol 2023; 601:3703-3704. [PMID: 37492964 DOI: 10.1113/jp285121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Affiliation(s)
- Nikhila Butani
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kirandeep Toor
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Tubek S, Niewinski P, Langner-Hetmanczuk A, Jura M, Kuliczkowski W, Reczuch K, Ponikowski P. The effects of P2Y 12 adenosine receptors' inhibitors on central and peripheral chemoreflexes. Front Physiol 2023; 14:1214893. [PMID: 37538377 PMCID: PMC10394699 DOI: 10.3389/fphys.2023.1214893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction: The most common side effect of ticagrelor is dyspnea, which leads to premature withdrawal of this life-saving medication in 6.5% of patients. Increased chemoreceptors' sensitivity was suggested as a possible pathophysiological explanation of this phenomenon; however, the link between oversensitization of peripheral and/or central chemosensory areas and ticagrelor intake has not been conclusively proved. Methods: We measured peripheral chemoreceptors' sensitivity using hypoxic ventilatory response (HVR), central chemoreceptors' sensitivity using hypercapnic hyperoxic ventilatory response (HCVR), and dyspnea severity before and 4 ± 1 weeks following ticagrelor initiation in 11 subjects with chronic coronary syndrome undergoing percutaneous coronary intervention (PCI). The same tests were performed in 11 age-, sex-, and BMI-matched patients treated with clopidogrel. The study is registered at ClinicalTrials.com at NCT05080478. Results: Ticagrelor significantly increased both HVR (0.52 ± 0.46 vs. 0.84 ± 0.69 L min-1 %-1; p < 0.01) and HCVR (1.05 ± 0.64 vs. 1.75 ± 1.04 L min-1 mmHg-1; p < 0.01). The absolute change in HVR correlated with the change in HCVR. Clopidogrel administration did not significantly influence HVR (0.63 ± 0.32 vs. 0.58 ± 0.33 L min-1%-1; p = 0.53) and HCVR (1.22 ± 0.67 vs. 1.2 ± 0.64 L min-1 mmHg-1; p = 0.79). Drug-related dyspnea was reported by three subjects in the ticagrelor group and by none in the clopidogrel group. These patients were characterized by either high baseline HVR and HCVR or excessive increase in HVR following ticagrelor initiation. Discussion: Ticagrelor, contrary to clopidogrel, sensitizes both peripheral and central facets of chemodetection. Two potential mechanisms of ticagrelor-induced dyspnea have been identified: 1) high baseline HVR and HCVR or 2) excessive increase in HVR or HVR and HCVR. Whether other patterns of changes in chemosensitivities play a role in the pathogenesis of this phenomenon needs to be further investigated.
Collapse
Affiliation(s)
- Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Anna Langner-Hetmanczuk
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Maksym Jura
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
- Department of Physiology, Wroclaw Medical University, Wroclaw, Poland
| | - Wiktor Kuliczkowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Krzysztof Reczuch
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
5
|
A Methodological Perspective on the Function and Assessment of Peripheral Chemoreceptors in Heart Failure: A Review of Data from Clinical Trials. Biomolecules 2022; 12:biom12121758. [PMID: 36551186 PMCID: PMC9775522 DOI: 10.3390/biom12121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Augmented peripheral chemoreceptor sensitivity (PChS) is a common feature of many sympathetically mediated diseases, among others, and it is an important mechanism of the pathophysiology of heart failure (HF). It is related not only to the greater severity of symptoms, especially to dyspnea and lower exercise tolerance but also to a greater prevalence of complications and poor prognosis. The causes, mechanisms, and impact of the enhanced activity of peripheral chemoreceptors (PChR) in the HF population are subject to intense research. Several methodologies have been established and utilized to assess the PChR function. Each of them presents certain advantages and limitations. Furthermore, numerous factors could influence and modulate the response from PChR in studied subjects. Nevertheless, even with the impressive number of studies conducted in this field, there are still some gaps in knowledge that require further research. We performed a review of all clinical trials in HF human patients, in which the function of PChR was evaluated. This review provides an extensive synthesis of studies evaluating PChR function in the HF human population, including methods used, factors potentially influencing the results, and predictors of increased PChS.
Collapse
|
6
|
Katayama PL, Leirão IP, Kanashiro A, Menani JV, Zoccal DB, Colombari DSA, Colombari E. The carotid body: A novel key player in neuroimmune interactions. Front Immunol 2022; 13:1033774. [PMID: 36389846 PMCID: PMC9644854 DOI: 10.3389/fimmu.2022.1033774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
The idea that the nervous system communicates with the immune system to regulate physiological and pathological processes is not new. However, there is still much to learn about how these interactions occur under different conditions. The carotid body (CB) is a sensory organ located in the neck, classically known as the primary sensor of the oxygen (O2) levels in the organism of mammals. When the partial pressure of O2 in the arterial blood falls, the CB alerts the brain which coordinates cardiorespiratory responses to ensure adequate O2 supply to all tissues and organs in the body. A growing body of evidence, however, has demonstrated that the CB is much more than an O2 sensor. Actually, the CB is a multimodal sensor with the extraordinary ability to detect a wide diversity of circulating molecules in the arterial blood, including inflammatory mediators. In this review, we introduce the literature supporting the role of the CB as a critical component of neuroimmune interactions. Based on ours and other studies, we propose a novel neuroimmune pathway in which the CB acts as a sensor of circulating inflammatory mediators and, in conditions of systemic inflammation, recruits a sympathetic-mediated counteracting mechanism that appears to be a protective response.
Collapse
Affiliation(s)
- Pedro L. Katayama
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Isabela P. Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José V. Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Daniel B. Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Débora S. A. Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| |
Collapse
|
7
|
Gentile F, Emdin M, Passino C, Giannoni A. Sex-related difference in sympathetic chemoreflex response: Does it matter in clinical disease? J Physiol 2022; 600:4247-4248. [PMID: 35969001 DOI: 10.1113/jp283643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Francesco Gentile
- Cardiology Division, Pisa University Hospital, Pisa, Italy.,Cardiology and Cardiovascular Medicine Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Cardiology and Cardiovascular Medicine Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.,Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudio Passino
- Cardiology and Cardiovascular Medicine Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.,Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Giannoni
- Cardiology and Cardiovascular Medicine Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.,Health Sciences Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|