1
|
Li X, Heizhati M, Li M, Yao L, Wu T, Yang W, Gan L, Wang H, Liu M, Maitituersun A, Lin M, Hong J, Li N. Poor sleep quality was associated with increased plasma aldosterone concentration in community dwellers, a cross-sectional study. Sci Rep 2025; 15:10817. [PMID: 40155448 PMCID: PMC11953333 DOI: 10.1038/s41598-025-91538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2025] [Indexed: 04/01/2025] Open
Abstract
Sleep is implicated in circulating aldosterone, whereas effects of overall sleep quality are not characterized. Therefore, we explored relationship of sleep quality with plasma aldosterone concentration (PAC) in general population. We evaluated sleep quality using Pittsburgh sleep quality index (PSQI) and measured PAC in adults cross-sectionally. We divided participants into very good, fairly good, fairly bad and very bad sleepers, compared PAC and log-PAC, and applied linear regression to examine association of PSQI score with log-PAC, in total, gender- and age-stratified (young, middle-aged and old) participants. Sensitivity analysis were performed by excluding hypertension, sleep disordered breathing (SDB), or both. Among 29,499 participants, PAC showed significant increase from very good to very bad sleepers in total (14.3 vs. 14.4 vs. 14.7 vs. 15.8ng/dL), and in male participants (13.1 vs. 13.6 vs. 14.1 vs. 14.9ng/dL), consistent in the young and the middle-aged (P for all < 0.001) and in log PAC of total, in male and in different age groups (P for trend < 0.001). PSQI score showed significant positive association with log-PAC in total (B, 95%CI: 0.007, 0.003-0.010, P < 0.001) in male participants (0.013, 0.008-0.018, P < 0.001), consistent in the young and the middle-aged and in adjusted models. In female, PSQI score showed significant positive association with log-PAC in the old-aged. Sensitivity analysis yielded consistent observation with main analysis. Poor sleep quality is associated with elevated PAC, in young and middle-aged male and in elder female, independent of SDB and hypertension, indicating potential involvement of sleep quality on regulation of circulating aldosterone.
Collapse
Affiliation(s)
- Xiufang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Mulalibieke Heizhati
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China.
| | - Mei Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Ling Yao
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Ting Wu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Wenbo Yang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Lin Gan
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Hui Wang
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Miaomiao Liu
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Adalaiti Maitituersun
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Mengyue Lin
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Jing Hong
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China
| | - Nanfang Li
- Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, HC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region "Hypertension Research Laboratory", Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Disease, No. 91 Tianchi Road, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
2
|
Robbins R, Affouf M, Masiakos PT, Iyer JM, Griggs C, Klerman EB, Sacks CA. Estimating Community Disruption from Nighttime Gunshots in 6 U.S. Cities, 2015 to 2021. J Gen Intern Med 2024; 39:2380-2389. [PMID: 38565768 PMCID: PMC11436611 DOI: 10.1007/s11606-024-08707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Gunshots affect those directly involved in an incident and those in the surrounding community. The community-level impact of nighttime gunshots, which may be particularly disruptive to the sleep of nearby community members, is unknown. OBJECTIVE Our aim is to estimate the number of people potentially affected by nighttime gunshots and the relationship between nighttime gunshots and median household income in the USA. DESIGN We collected publicly available data on the timing and location of gunshots in six U.S. cities (Baltimore, MD; Boston, MA; Washington, D.C.; New York, NY; Philadelphia, PA; and Portland, OR) from 2015 to 2021. We then analyzed the data by computing rate ratios (RRs) to compare the frequency of gunshots during nighttime hours (6:00 pm to 5:59 am) versus daytime hours (6:00 am to 5:59 pm). Additionally, we used geospatial mapping to create choropleth maps to visualize the variation in nighttime gunshot density across cities. We estimated, using city-wide population, person-nights potentially impacted by the sound of gunshots within areas of 0.2- (low) and 0.5-mile (high) radius. Finally, for five of six cities where data on median household income were available by census tract, we built nonlinear regression models to estimate the relationship between the number of nighttime gunshots and median household income. KEY RESULTS We analyzed 72,236 gunshots. Gunshots were more common during the nighttime than daytime (overall RR = 2.5). Analyses demonstrated that the low estimates for the mean annual number of person-nights impacted by nighttime gunshots were 0.4 million in Baltimore and Portland, 1.3 million in Philadelphia, 1.6 million in Boston, 2.9 million in New York City, and 5.9 million in Washington. The number of nighttime gunshots was inversely related to median household income. CONCLUSIONS Nighttime gunshots are prevalent, particularly in low-income neighborhoods, and may have under-recognized effects on the surrounding community.
Collapse
Affiliation(s)
- Rebecca Robbins
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham & Women's Hospital; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
- Center for Gun Violence Prevention, Massachusetts General Hospital, Boston, MA, USA.
| | - Mahmoud Affouf
- Department of Mathematics, Kean University, Union, NJ, USA
| | - Peter T Masiakos
- Center for Gun Violence Prevention, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jay M Iyer
- Departments of Molecular and Cellular Biology and Statistics, Harvard University, Cambridge, MA, USA
| | - Cornelia Griggs
- Center for Gun Violence Prevention, Massachusetts General Hospital, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham & Women's Hospital; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Division of Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chana A Sacks
- Center for Gun Violence Prevention, Massachusetts General Hospital, Boston, MA, USA
- Division of General Internal Medicine and Mongan Institute, Massachusetts General Hospital, Harvard Medical School Boston, Boston, MA, USA
| |
Collapse
|
3
|
Mergenthaler P, Balami JS, Neuhaus AA, Mottahedin A, Albers GW, Rothwell PM, Saver JL, Young ME, Buchan AM. Stroke in the Time of Circadian Medicine. Circ Res 2024; 134:770-790. [PMID: 38484031 DOI: 10.1161/circresaha.124.323508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Time-of-day significantly influences the severity and incidence of stroke. Evidence has emerged not only for circadian governance over stroke risk factors, but also for important determinants of clinical outcome. In this review, we provide a comprehensive overview of the interplay between chronobiology and cerebrovascular disease. We discuss circadian regulation of pathophysiological mechanisms underlying stroke onset or tolerance as well as in vascular dementia. This includes cell death mechanisms, metabolism, mitochondrial function, and inflammation/immunity. Furthermore, we present clinical evidence supporting the link between disrupted circadian rhythms and increased susceptibility to stroke and dementia. We propose that circadian regulation of biochemical and physiological pathways in the brain increase susceptibility to damage after stroke in sleep and attenuate treatment effectiveness during the active phase. This review underscores the importance of considering circadian biology for understanding the pathology and treatment choice for stroke and vascular dementia and speculates that considering a patient's chronotype may be an important factor in developing precision treatment following stroke.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Department of Neurology with Experimental Neurology (P.M.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Joyce S Balami
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Ain A Neuhaus
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, United Kingdom (A.A.N.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Amin Mottahedin
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Gregory W Albers
- Department of Neurology, Stanford Hospital, Palo Alto, CA (G.W.A.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Peter M Rothwell
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences (P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, Geffen School of Medicine, University of Los Angeles, CA (J.L.S.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham (M.E.Y.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Alastair M Buchan
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| |
Collapse
|
4
|
McCullar KS, Abbaspour S, Wang W, Aguirre AD, Westover MB, Klerman EB. Timing of diuretic administration effects on urine volume in hospitalized patients. Front Physiol 2024; 14:1208324. [PMID: 38321985 PMCID: PMC10844419 DOI: 10.3389/fphys.2023.1208324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024] Open
Abstract
Importance: Some medications have effects that depend on the time of day they are given. Current knowledge of the time-of-day effects of specific medications in hospitalized patients with cardiovascular disease is very limited. In hospitalized patients, increased medication efficiency might reduce dose (and associated side effects) and/or the length of time in the Intensive Care Unit (ICU) or hospital-potentially improving patient outcomes and patient and family quality of life and reducing financial costs. We studied whether the time of day or night patients in Cardiac or Intensive Care Units receive a diuretic affects urine volume. Methods: In this observational study, data were collected from 7,685 patients (63% male, 18 to 98 years old) admitted to one hospital's Acute Care Cardiac units, Cardiac ICUs, Cardiac Surgery ICUs, and/or Non-cardiac ICUs who received intravenous furosemide (a diuretic), had measurements of urine volume, were hospitalized for ≥3 days between January 2016 to July 2021 and were older than 18 years. The outcomes of interest were urine volume normalized by the most recent (not older than 24 h) weight or body mass index (BMI), (i) in the hour after the time of diuretic administration, and (ii) when no diuretics were administered for the previous 3 h. Results: We identified diuretic medication administration time 23:00-04:59 as a predictor of higher urine volume response. For patients without recent diuretic medication, higher urine volume was predicted 11:00-16:59 and 17:00-22:59. Other factors that affected urine volume response to the diuretic were sex, age, medication dose, creatinine concentration, diagnoses, and hospital unit. Discussion: Time-of-day of medication administration may be a factor associated with increased medication efficiency. Randomized controlled trials should be conducted to quantify the relative effect of modifiable factors, such as time of medication administration, that may affect short- and longer-term outcomes.
Collapse
Affiliation(s)
- Katie S. McCullar
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Sara Abbaspour
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Wei Wang
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States
| | - Aaron D. Aguirre
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - M. Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Elizabeth B. Klerman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
5
|
Shafer BM, Kogan SA, McHill AW. Pressure Building Against the Clock: The Impact of Circadian Misalignment on Blood Pressure. Curr Hypertens Rep 2024; 26:31-42. [PMID: 37837518 PMCID: PMC10916535 DOI: 10.1007/s11906-023-01274-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE OF REVIEW Misalignment between the endogenous biological timing system and behavioral activities (i.e., sleep/wake, eating, activity) contributes to adverse cardiovascular health. In this review, we discuss the effects of recurring circadian misalignment on blood pressure regulation and the implications for hypertension development. Additionally, we highlight emerging therapeutic approaches designed to mitigate the negative cardiovascular consequences elicited by circadian disruption. RECENT FINDINGS Circadian misalignment elicited by work schedules that require individuals to be awake during the biological night (i.e., shift work) alters 24-h blood pressure rhythms. Mechanistically, circadian misalignment appears to alter blood pressure via changes in autonomic nervous system balance, variations to sodium retention, dysregulation of endothelial vasodilatory responsiveness, and activation of proinflammatory mechanisms. Recurring circadian misalignment produced by a mismatch in sleep timing on free days vs. work days (i.e., social jetlag) appears to have no direct effects on prevailing blood pressure levels in healthy adults; though, circadian disruptions resulting from social jetlag may increase the risk of hypertension through enhanced sympathetic activation and/or obesity. Furthermore, social jetlag assessment may be a useful metric in shift work populations where the magnitude of circadian misalignment may be greater than in the general population. Circadian misalignment promotes unfavorable changes to 24-h blood pressure rhythms, most notably in shift working populations. While light therapy, melatonin supplementation, and the timing of drug administration may improve cardiovascular outcomes, interventions designed to target the effects of circadian misalignment on blood pressure regulation are warranted.
Collapse
Affiliation(s)
- Brooke M Shafer
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, 3455 SW US Veterans Hospital Rd, Portland, OR, 97239, USA
| | - Sophia A Kogan
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, 3455 SW US Veterans Hospital Rd, Portland, OR, 97239, USA
| | - Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, 3455 SW US Veterans Hospital Rd, Portland, OR, 97239, USA.
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|