1
|
Saha S, Manna MK, Chakravarty A, Sarkar S, Mukhopadhyay A, Sen S. Insights into the fluid dynamics of bioaerosol formation in a model respiratory tract. BIOMICROFLUIDICS 2024; 18:054106. [PMID: 39301087 PMCID: PMC11410387 DOI: 10.1063/5.0219332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Bioaerosols produced within the respiratory system play an important role in respiratory disease transmission. These include infectious diseases such as common cold, influenza, tuberculosis, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among several others. It is, therefore, of immense interest to understand how bioaerosols are produced within the respiratory system. This has not been extensively investigated. The present study computationally investigates how bioaerosols are produced in a model respiratory tract due to hydrodynamic interactions between breathed air and a thin mucus layer, which lines the inner surface of the tract. It is observed that Kelvin-Helmholtz instability is established in the thin mucus layer due to associated fluid dynamics. This induces interfacial surface waves which fragment forming bioaerosols under certain conditions. A regime map is created-based on pertinent dimensionless parameters-to enable identification of such conditions. Analysis indicates that bioaerosols may be produced even under normal breathing conditions, contrary to expectations, depending on mucus rheology and thickness of the mucus layer. This is possible during medical conditions as well as during some treatment protocols. However, such bioaerosols are observed to be larger ( ∼ O ( 100 ) μ m) and are produced in less numbers ( ∼ 100 ), as compared to those produced under coughing conditions. Treatment protocols and therapeutic strategies may be suitably devised based on these findings.
Collapse
Affiliation(s)
- Sudipta Saha
- School of Nuclear Studies and Application, Jadavpur University (Salt Lake campus), Kolkata 700106, India
| | - Manish Kumar Manna
- Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| | - Aranyak Chakravarty
- School of Nuclear Studies and Application, Jadavpur University (Salt Lake campus), Kolkata 700106, India
| | - Sourav Sarkar
- Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| | | | - Swarnendu Sen
- Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
2
|
Chalvatzaki E, Lazaridis M. A model study on the effect of human's height variability in particle deposition and retained dose in the respiratory tract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50198-50208. [PMID: 39090297 DOI: 10.1007/s11356-024-34539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
The objective of the current study was to investigate the impact of human's height variability to the deposition percentage, the deposited and the retained dose of particulate matter in the respiratory tract. In addition, the dose to the oesophagus, blood and lymph nodes was evaluated after particle clearance. A methodology which correlates anatomical and physiological parameters with height was adopted into an existing particle dosimetry model (Exposure Dose Model 2, ExDoM2). Model results showed that deposition of particles with aerodynamic diameter (dae) ranging from 0.001 to 10 μm depends on the competition between anatomical/physiological parameters, with the maximum effect induced from height variability to be observed for particles in the size range of 0.30 μm
Collapse
Affiliation(s)
- Eleftheria Chalvatzaki
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Crete, Greece
| | - Mihalis Lazaridis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Crete, Greece.
| |
Collapse
|
3
|
Vasquez PA, Walker B, Bloom K, Kolbin D, Caughman N, Freeman R, Lysy M, Hult C, Newhall KA, Papanikolas M, Edelmaier C, Forest MG. The power of weak, transient interactions across biology: A paradigm of emergent behavior. PHYSICA D. NONLINEAR PHENOMENA 2023; 454:133866. [PMID: 38274029 PMCID: PMC10806540 DOI: 10.1016/j.physd.2023.133866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
A growing list of diverse biological systems and their equally diverse functionalities provides realizations of a paradigm of emergent behavior. In each of these biological systems, pervasive ensembles of weak, short-lived, spatially local interactions act autonomously to convey functionalities at larger spatial and temporal scales. In this article, a range of diverse systems and functionalities are presented in a cursory manner with literature citations for further details. Then two systems and their properties are discussed in more detail: yeast chromosome biology and human respiratory mucus.
Collapse
Affiliation(s)
- Paula A. Vasquez
- Department of Mathematics, University of South Carolina, United States of America
| | - Ben Walker
- Department of Mathematics, University of California at Irvine, United States of America
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, United States of America
| | - Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, United States of America
| | - Neall Caughman
- Department of Mathematics, University of North Carolina at Chapel Hill, United States of America
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
| | - Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo, Canada
| | - Caitlin Hult
- Department of Mathematics, Gettysburg College, United States of America
| | - Katherine A. Newhall
- Department of Mathematics, University of North Carolina at Chapel Hill, United States of America
| | - Micah Papanikolas
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
| | - Christopher Edelmaier
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
- Center for Computational Biology, Flatiron Institute, United States of America
| | - M. Gregory Forest
- Department of Mathematics, University of North Carolina at Chapel Hill, United States of America
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
4
|
Bustos NA, Ribbeck K, Wagner CE. The role of mucosal barriers in disease progression and transmission. Adv Drug Deliv Rev 2023; 200:115008. [PMID: 37442240 DOI: 10.1016/j.addr.2023.115008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/22/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Mucus is a biological hydrogel that coats and protects all non-keratinized wet epithelial surfaces. Mucins, the primary structural components of mucus, are critical components of the gel layer that protect against invading pathogens. For communicable diseases, pathogen-mucin interactions contribute to the pathogen's fate and the potential for disease progression in-host, as well as the potential for onward transmission. We begin by reviewing in-host mucus filtering mechanisms, including size filtering and interaction filtering, which regulate the permeability of mucus barriers to all molecules including pathogens. Next, we discuss the role of mucins in communicable diseases at the point of transmission (i.e. how the encapsulation of pathogens in emitted mucosal droplets externally to hosts may modulate pathogen infectivity and viability). Overall, mucosal barriers modulate both host susceptibility as well as the dynamics of population-level disease transmission. The study of mucins and their use in models and experimental systems are therefore crucial for understanding the mechanistic biophysical principles underlying disease transmission and the early stages of host infection.
Collapse
Affiliation(s)
- Nicole A Bustos
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline E Wagner
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Everett C, Darquenne C, Niles R, Seifert M, Tumminello PR, Slade JH. Aerosols, airflow, and more: examining the interaction of speech and the physical environment. Front Psychol 2023; 14:1184054. [PMID: 37255523 PMCID: PMC10225543 DOI: 10.3389/fpsyg.2023.1184054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
We describe ongoing efforts to better understand the interaction of spoken languages and their physical environments. We begin by briefly surveying research suggesting that languages evolve in ways that are influenced by the physical characteristics of their environments, however the primary focus is on the converse issue: how speech affects the physical environment. We discuss the speech-based production of airflow and aerosol particles that are buoyant in ambient air, based on some of the results in the literature. Most critically, we demonstrate a novel method used to capture aerosol, airflow, and acoustic data simultaneously. This method captures airflow data via a pneumotachograph and aerosol data via an electrical particle impactor. The data are collected underneath a laminar flow hood while participants breathe pure air, thereby eliminating background aerosol particles and isolating those produced during speech. Given the capabilities of the electrical particle impactor, which has not previously been used to analyze speech-based aerosols, the method allows for the detection of aerosol particles at temporal and physical resolutions exceeding those evident in the literature, even enabling the isolation of the role of individual sound types in the production of aerosols. The aerosols detected via this method range in size from 70 nanometers to 10 micrometers in diameter. Such aerosol particles are capable of hosting airborne pathogens. We discuss how this approach could ultimately yield data that are relevant to airborne disease transmission and offer preliminary results that illustrate such relevance. The method described can help uncover the actual articulatory gestures that generate aerosol emissions, as exemplified here through a discussion focused on plosive aspiration and vocal cord vibration. The results we describe illustrate in new ways the unseen and unheard ways in which spoken languages interact with their physical environments.
Collapse
Affiliation(s)
- Caleb Everett
- Departments of Anthropology and Psychology, University of Miami, Coral Gables, FL, United States
| | - Chantal Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Renee Niles
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Marva Seifert
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Paul R. Tumminello
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan H. Slade
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Jeon J, Zhang Q, Chepaitis PS, Greenwald R, Black M, Wright C. Toxicological Assessment of Particulate and Metal Hazards Associated with Vaping Frequency and Device Age. TOXICS 2023; 11:155. [PMID: 36851030 PMCID: PMC9967192 DOI: 10.3390/toxics11020155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Electronic nicotine delivery systems (ENDS) aerosols are complex mixtures of chemicals, metals, and particles that may present inhalation hazards and adverse respiratory health risks. Despite being considered a safer alternative to tobacco cigarettes, metal exposure levels and respiratory effects associated with device aging and vaping frequency have not been fully characterized. In this study, we utilize an automated multi-channel ENDS aerosol generation system (EAGS) to generate aerosols from JUUL pod-type ENDS using tobacco-flavored e-liquid. Aerosol puff fractions (1-50) and (101-150) are monitored and sampled using various collection media. Extracted aerosols are prepared for metal and toxicological analysis using human primary small airway epithelial cells (SAEC). ENDS aerosol-mediated cellular responses, including reactive oxygen species (ROS), oxidative stress, cell viability, and DNA damage, are evaluated after 24 h and 7-day exposures. Our results show higher particle concentrations in later puff fractions (0.135 mg/m3) than in initial puff fractions (0.00212 mg/m3). Later puff fraction aerosols contain higher toxic metal concentrations, including chromium, copper, and lead, which elicit increased levels of ROS followed by significant declines in total glutathione and cell viability. Notably, a 30% increase in DNA damage was observed after 7 days because of later puff fraction exposures. This work is consistent with ENDS aerosols becoming more hazardous across the use of pre-filled pod devices, which may threaten respiratory health.
Collapse
Affiliation(s)
- Jennifer Jeon
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA
| | - Qian Zhang
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA
| | - Patrick S. Chepaitis
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA
| | - Roby Greenwald
- School of Public Health, Georgia State University, Atlanta, GA 303132, USA
| | - Marilyn Black
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA
| | - Christa Wright
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA
| |
Collapse
|
7
|
Chakravarty A, Panchagnula MV, Patankar NA. Inhalation of virus-loaded droplets as a clinically plausible pathway to deep lung infection. Front Physiol 2023; 14:1073165. [PMID: 36744036 PMCID: PMC9892651 DOI: 10.3389/fphys.2023.1073165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Respiratory viruses, such as SARS-CoV-2, preliminarily infect the nasopharyngeal mucosa. The mechanism of infection spread from the nasopharynx to the deep lung-which may cause a severe infection-is, however, still unclear. We propose a clinically plausible mechanism of infection spread to the deep lung through droplets, present in the nasopharynx, inhaled and transported into the lower respiratory tract. A coupled mathematical model of droplet, virus transport and virus infection kinetics is exercised to demonstrate clinically observed times to deep lung infection. The model predicts, in agreement with clinical observations, that severe infection can develop in the deep lung within 2.5-7 days of initial symptom onset. Results indicate that while fluid dynamics plays an important role in transporting the droplets, infection kinetics and immune responses determine infection growth and resolution. Immune responses, particularly antibodies and T-lymphocytes, are observed to be critically important for preventing infection severity. This reinforces the role of vaccination in preventing severe infection. Managing aerosolization of infected nasopharyngeal mucosa is additionally suggested as a strategy for minimizing infection spread and severity.
Collapse
Affiliation(s)
- Aranyak Chakravarty
- School of Nuclear Studies and Application, Jadavpur University, Kolkata, India,Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Mahesh V. Panchagnula
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Neelesh A. Patankar
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, United States,*Correspondence: Neelesh A. Patankar,
| |
Collapse
|
8
|
Zhang X, Li F, Rajaraman PK, Choi J, Comellas AP, Hoffman EA, Smith BM, Lin CL. A computed tomography imaging-based subject-specific whole-lung deposition model. Eur J Pharm Sci 2022; 177:106272. [PMID: 35908637 PMCID: PMC9477651 DOI: 10.1016/j.ejps.2022.106272] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
Abstract
The respiratory tract is an important route for beneficial drug aerosol or harmful particulate matter to enter the body. To assess the therapeutic response or disease risk, whole-lung deposition models have been developed, but were limited by compartment, symmetry or stochastic approaches. In this work, we proposed an imaging-based subject-specific whole-lung deposition model. The geometries of airways and lobes were segmented from computed tomography (CT) lung images at total lung capacity (TLC), and the regional air-volume changes were calculated by registering CT images at TLC and functional residual capacity (FRC). The geometries were used to create the structure of entire subject-specific conducting airways and acinar units. The air-volume changes were used to estimate the function of subject-specific ventilation distributions among acinar units and regulate flow rates in respiratory airway models. With the airway dimensions rescaled to a desired lung volume and the airflow field simulated by a computational fluid dynamics model, particle deposition fractions were calculated using deposition probability formulae adjusted with an enhancement factor to account for the effects of secondary flow and airway geometry in proximal airways. The proposed model was validated in silico against existing whole-lung deposition models, three-dimensional (3D) computational fluid and particle dynamics (CFPD) for an acinar unit, and 3D CFPD deep lung model comprising conducting and respiratory regions. The model was further validated in vivo against the lobar particle distribution and the coefficient of variation of particle distribution obtained from CT and single-photon emission computed tomography (SPECT) images, showing good agreement. Subject-specific airway structure increased the deposition fraction of 10.0-μm particles and 0.01-μm particles by approximately 10%. An enhancement factor increased the overall deposition fractions, especially for particle sizes between 0.1 and 1.0 μm.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Mechanical Engineering, 2406 Seamans Center for the Engineering Art and Science, University of Iowa, Iowa City, Iowa 52242, USA; IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Frank Li
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, Iowa, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | | | - Jiwoong Choi
- Department of Mechanical Engineering, 2406 Seamans Center for the Engineering Art and Science, University of Iowa, Iowa City, Iowa 52242, USA; Department of Internal Medicine, School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Alejandro P Comellas
- Department of Mechanical Engineering, 2406 Seamans Center for the Engineering Art and Science, University of Iowa, Iowa City, Iowa 52242, USA; Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, School of Medicine, University of Kansas, Kansas City, Kansas, USA; Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Benjamin M Smith
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Medicine, McGill University Health Centre Research Institute, Montreal, Canada
| | - Ching-Long Lin
- Department of Mechanical Engineering, 2406 Seamans Center for the Engineering Art and Science, University of Iowa, Iowa City, Iowa 52242, USA; IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, Iowa, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA; Department of Radiology, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|