1
|
Lipshutz SE, Hibbins MS, Bentz AB, Buechlein AM, Empson TA, George EM, Hauber ME, Rusch DB, Schelsky WM, Thomas QK, Torneo SJ, Turner AM, Wolf SE, Woodruff MJ, Hahn MW, Rosvall KA. Repeated behavioural evolution is associated with convergence of gene expression in cavity-nesting songbirds. Nat Ecol Evol 2025; 9:845-856. [PMID: 40295778 DOI: 10.1038/s41559-025-02675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025]
Abstract
Uncovering the genomic bases of phenotypic adaptation is a major goal in biology, but this has been hard to achieve for complex behavioural traits. Here we leverage the repeated, independent evolution of obligate cavity nesting in birds to test the hypothesis that pressure to compete for a limited breeding resource has facilitated convergent evolution in behaviour, hormones and gene expression. We used an integrative approach, combining aggression assays in the field, testosterone measures and transcriptome-wide analyses of the brain in wild-captured females and males. Our experimental design compared species pairs across five avian families, each including one obligate cavity-nesting species and a related species with a more flexible nest strategy. We find behavioural convergence, with higher levels of territorial aggression in obligate cavity nesters, particularly among females. Across species, levels of testosterone in circulation were not associated with nest strategy nor aggression. Phylogenetic analyses of individual genes and co-regulated gene networks revealed more shared patterns of brain gene expression than expected by drift, although the scope of convergent gene expression evolution was limited to a small percentage of the genome. When comparing our results to other studies that did not use phylogenetic methods, we suggest that accounting for shared evolutionary history may reduce the number of genes inferred as convergently evolving. Altogether, we find that behavioural convergence in response to shared ecological pressures is associated with largely independent evolution of gene expression across different avian families, punctuated by a narrow set of convergently evolving genes.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN, USA.
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.
- Department of Biology, Duke University, Durham, NC, USA.
| | - Mark S Hibbins
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Aaron M Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Tara A Empson
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth M George
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Advanced Science Research Center and Programs in Biology and in Psychology, Graduate Center of the City University of New York, New York, NY, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Wendy M Schelsky
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
- The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Quinn K Thomas
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Samuel J Torneo
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Abbigail M Turner
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sarah E Wolf
- Department of Biology, Indiana University, Bloomington, IN, USA
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Mary J Woodruff
- Department of Biology, Indiana University, Bloomington, IN, USA
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
2
|
Fischer SE, Otten JG, Lindsay AM, Miles D, Streby H. Six-decade research bias towards fancy and familiar bird species. Proc Biol Sci 2025; 292:20242846. [PMID: 40169021 PMCID: PMC11961255 DOI: 10.1098/rspb.2024.2846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 03/11/2025] [Indexed: 04/03/2025] Open
Abstract
Human implicit biases towards visually appealing and familiar stimuli are well documented and rooted in our brains' reward systems. For example, humans are drawn to charismatic, familiar organisms, but less is known about whether such biases permeate research choices among biologists, who strive for objectivity. The factors driving research effort, such as aesthetics, logistics and species' names, are poorly understood. We report that, from 1965 to 2020, nearly half of the variation in publication trends among 293 North American male passerine and near-passerine birds was explained by three factors subject to human bias: aesthetic salience (visual appeal), range size (familiarity) and the number of universities within ranges (accessibility). We also demonstrate that endangered birds and birds featured on journal covers had higher aesthetic salience, and birds with eponymous names were studied about half as much as those not named after humans. Thus, ornithological knowledge, and decisions based thereon, is heavily skewed towards fancy, familiar species. This knowledge disparity feeds a cycle of public interest, environmental policy, conservation, funding opportunities and scientific narratives, shrouding potentially important information in the proverbial plumage of drab, distant, disregarded species. The unintended consequences of biologists' choices may exacerbate organismal inequalities amid biodiversity declines and limit opportunities for scientific inquiry.
Collapse
Affiliation(s)
- Silas E Fischer
- Department of Environmental Sciences, The University of Toledo, Toledo, OH, USA
| | - Joshua G Otten
- Department of Environmental Sciences, The University of Toledo, Toledo, OH, USA
- Department of Biology, Cornell College, Mount Vernon, IA, USA
| | - Andrea M Lindsay
- Department of Environmental Sciences, The University of Toledo, Toledo, OH, USA
- Powdermill Nature Reserve, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | - Donald Miles
- Biological Sciences, Ohio University, Athens, OH, USA
| | - Henry Streby
- Department of Environmental Sciences, The University of Toledo, Toledo, OH, USA
| |
Collapse
|
3
|
Kaplan G. The evolution of social play in songbirds, parrots and cockatoos - emotional or highly complex cognitive behaviour or both? Neurosci Biobehav Rev 2024; 161:105621. [PMID: 38479604 DOI: 10.1016/j.neubiorev.2024.105621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/04/2024] [Accepted: 03/09/2024] [Indexed: 04/20/2024]
Abstract
Social play has been described in many animals. However, much of this social behaviour among birds, particularly in adults, is still relatively unexplored in terms of the environmental, psychological, and social dynamics of play. This paper provides an overview of what we know about adult social play in birds and addresses areas in which subtleties and distinctions, such as in play initiation and social organisation and its relationship to expressions of play, are considered in detail. The paper considers emotional, social, innovative, and cognitive aspects of play, then the environmental conditions and affiliative bonds, suggesting a surprisingly complex framework of criteria awaiting further research. Adult social play has so far been studied in only a small number of avian species, exclusively in those with a particularly large brain relative to body size without necessarily addressing brain functions and lateralization. When lateralization of brain function is considered, it can further illuminate a possibly significant relevance of play behaviour to the evolution of cognition, to management of emotions, and the development of sociality.
Collapse
Affiliation(s)
- Gisela Kaplan
- University of New England, Armidale, NSW, Australia.
| |
Collapse
|
4
|
Monari PK, Hammond ER, Zhao X, Maksimoski AN, Petric R, Malone CL, Riters LV, Marler CA. Conditioned preferences: Gated by experience, context, and endocrine systems. Horm Behav 2024; 161:105529. [PMID: 38492501 DOI: 10.1016/j.yhbeh.2024.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Central to the navigation of an ever-changing environment is the ability to form positive associations with places and conspecifics. The functions of location and social conditioned preferences are often studied independently, limiting our understanding of their interplay. Furthermore, a de-emphasis on natural functions of conditioned preferences has led to neurobiological interpretations separated from ecological context. By adopting a naturalistic and ethological perspective, we uncover complexities underlying the expression of conditioned preferences. Development of conditioned preferences is a combination of motivation, reward, associative learning, and context, including for social and spatial environments. Both social- and location-dependent reward-responsive behaviors and their conditioning rely on internal state-gating mechanisms that include neuroendocrine and hormone systems such as opioids, dopamine, testosterone, estradiol, and oxytocin. Such reinforced behavior emerges from mechanisms integrating past experience and current social and environmental conditions. Moreover, social context, environmental stimuli, and internal state gate and modulate motivation and learning via associative reward, shaping the conditioning process. We highlight research incorporating these concepts, focusing on the integration of social neuroendocrine mechanisms and behavioral conditioning. We explore three paradigms: 1) conditioned place preference, 2) conditioned social preference, and 3) social conditioned place preference. We highlight nonclassical species to emphasize the naturalistic applications of these conditioned preferences. To fully appreciate the complex integration of spatial and social information, future research must identify neural networks where endocrine systems exert influence on such behaviors. Such research promises to provide valuable insights into conditioned preferences within a broader naturalistic context.
Collapse
Affiliation(s)
- Patrick K Monari
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| | - Emma R Hammond
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Xin Zhao
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Alyse N Maksimoski
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Radmila Petric
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; Institute for the Environment, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Candice L Malone
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Lauren V Riters
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Catherine A Marler
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA.
| |
Collapse
|
5
|
Smiley KO, Munley KM, Aghi K, Lipshutz SE, Patton TM, Pradhan DS, Solomon-Lane TK, Sun SED. Sex diversity in the 21st century: Concepts, frameworks, and approaches for the future of neuroendocrinology. Horm Behav 2024; 157:105445. [PMID: 37979209 PMCID: PMC10842816 DOI: 10.1016/j.yhbeh.2023.105445] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Sex is ubiquitous and variable throughout the animal kingdom. Historically, scientists have used reductionist methodologies that rely on a priori sex categorizations, in which two discrete sexes are inextricably linked with gamete type. However, this binarized operationalization does not adequately reflect the diversity of sex observed in nature. This is due, in part, to the fact that sex exists across many levels of biological analysis, including genetic, molecular, cellular, morphological, behavioral, and population levels. Furthermore, the biological mechanisms governing sex are embedded in complex networks that dynamically interact with other systems. To produce the most accurate and scientifically rigorous work examining sex in neuroendocrinology and to capture the full range of sex variability and diversity present in animal systems, we must critically assess the frameworks, experimental designs, and analytical methods used in our research. In this perspective piece, we first propose a new conceptual framework to guide the integrative study of sex. Then, we provide practical guidance on research approaches for studying sex-associated variables, including factors to consider in study design, selection of model organisms, experimental methodologies, and statistical analyses. We invite fellow scientists to conscientiously apply these modernized approaches to advance our biological understanding of sex and to encourage academically and socially responsible outcomes of our work. By expanding our conceptual frameworks and methodological approaches to the study of sex, we will gain insight into the unique ways that sex exists across levels of biological organization to produce the vast array of variability and diversity observed in nature.
Collapse
Affiliation(s)
- Kristina O Smiley
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 639 North Pleasant Street, Morrill IVN Neuroscience, Amherst, MA 01003, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, 3695 Cullen Boulevard, Houston, TX 77204, USA.
| | - Krisha Aghi
- Department of Integrative Biology and Physiology, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA.
| | - Sara E Lipshutz
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA.
| | - Tessa M Patton
- Bioinformatics Program, Loyola University Chicago, 1032 West Sheridan Road, LSB 317, Chicago, IL 60660, USA.
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Mail Stop 8007, Pocatello, ID 83209, USA.
| | - Tessa K Solomon-Lane
- Scripps, Pitzer, Claremont McKenna Colleges, 925 North Mills Avenue, Claremont, CA 91711, USA.
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
6
|
Whelan S, Benowitz-Fredericks ZM, Hatch SA, Parenteau C, Chastel O, Elliott KH. Sex-specific responses to GnRH challenge, but not food supply, in kittiwakes: Evidence for the "sensitivity to information" hypothesis. Horm Behav 2023; 154:105389. [PMID: 37327549 DOI: 10.1016/j.yhbeh.2023.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/24/2023] [Accepted: 05/26/2023] [Indexed: 06/18/2023]
Abstract
Seasonal timing of breeding is usually considered to be triggered by endogenous responses linked to predictive cues (e.g., photoperiod) and supplementary cues that vary annually (e.g., food supply), but social cues are also important. Females may be more sensitive to supplementary cues because of their greater role in reproductive timing decisions, while males may only require predictive cues. We tested this hypothesis by food-supplementing female and male colonial seabirds (black-legged kittiwakes, Rissa tridactyla) during the pre-breeding season. We measured colony attendance via GPS devices, quantified pituitary and gonadal responses to gonadotropin releasing hormone (GnRH) challenge, and observed subsequent laying phenology. Food supplementation advanced laying phenology and increased colony attendance. While female pituitary responses to GnRH were consistent across the pre-breeding season, males showed a peak in pituitary sensitivity at approximately the same time that most females were initiating follicle development. The late peak in male pituitary response to GnRH questions a common assumption that males primarily rely on predictive cues (e.g., photoperiod) while females also rely on supplementary cues (e.g., food availability). Instead, male kittiwakes may integrate synchronising cues from their social environment to adjust their reproductive timing to coincide with female timing.
Collapse
Affiliation(s)
- Shannon Whelan
- Department of Natural Resources Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
| | | | - Scott A Hatch
- Institute for Seabird Research and Conservation, Anchorage, AK, USA
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR-7372, Villiers-en-Bois, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR-7372, Villiers-en-Bois, France
| | - Kyle H Elliott
- Department of Natural Resources Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|