1
|
Wang Y, Tu MJ, Yu AM. Efflux ABC transporters in drug disposition and their posttranscriptional gene regulation by microRNAs. Front Pharmacol 2024; 15:1423416. [PMID: 39114355 PMCID: PMC11303158 DOI: 10.3389/fphar.2024.1423416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane proteins expressed commonly in metabolic and excretory organs to control xenobiotic or endobiotic disposition and maintain their homeostasis. Changes in ABC transporter expression may directly affect the pharmacokinetics of relevant drugs involving absorption, distribution, metabolism, and excretion (ADME) processes. Indeed, overexpression of efflux ABC transporters in cancer cells or bacteria limits drug exposure and causes therapeutic failure that is known as multidrug resistance (MDR). With the discovery of functional noncoding microRNAs (miRNAs) produced from the genome, many miRNAs have been revealed to govern posttranscriptional gene regulation of ABC transporters, which shall improve our understanding of complex mechanism behind the overexpression of ABC transporters linked to MDR. In this article, we first overview the expression and localization of important ABC transporters in human tissues and their clinical importance regarding ADME as well as MDR. Further, we summarize miRNA-controlled posttranscriptional gene regulation of ABC transporters and effects on ADME and MDR. Additionally, we discuss the development and utilization of novel bioengineered miRNA agents to modulate ABC transporter gene expression and subsequent influence on cellular drug accumulation and chemosensitivity. Findings on posttranscriptional gene regulation of ABC transporters shall not only improve our understanding of mechanisms behind variable ADME but also provide insight into developing new means towards rational and more effective pharmacotherapies.
Collapse
Affiliation(s)
| | | | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, United States
| |
Collapse
|
2
|
Galluccio M, Mazza T, Scalise M, Tripicchio M, Scarpelli M, Tolomeo M, Pochini L, Indiveri C. Over-Production of the Human SLC7A10 in E. coli and Functional Assay in Proteoliposomes. Int J Mol Sci 2023; 25:536. [PMID: 38203703 PMCID: PMC10779382 DOI: 10.3390/ijms25010536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The human SLC7A10 transporter, also known as ASC-1, catalyzes the transport of some neutral amino acids. It is expressed in astrocytes, neurons, and adipose tissues, playing roles in learning, memory processes, and lipid metabolism, thus being involved in neurological and metabolic pathologies. Structure/function studies on this transporter are still in their infancy. In this study, we present a methodology for producing the recombinant human transporter in E. coli. Its transport function was assayed in proteoliposomes following the uptake of radiolabeled L-serine. After the testing of several growth conditions, the hASC-1 transporter was successfully expressed in BL21(DE3) codon plus RIL in the presence of 0.5% glucose and induced with 0.05 mM IPTG. After solubilization with C12E8 and cholesteryl hemisuccinate and purification by Ni-chelating chromatography, hASC-1 was reconstituted in proteoliposomes. In this experimental system it was able to catalyze an Na+-independent homologous antiport of L-serine. A Km for L-serine transport of 0.24 mM was measured. The experimental model developed in this work represents a reproducible system for the transport assay of hASC-1 in the absence of interferences. This tool will be useful to unveil unknown transport properties of hASC-1 and for testing ligands with possible application in human pharmacology.
Collapse
Affiliation(s)
- Michele Galluccio
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
| | - Tiziano Mazza
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
| | - Mariafrancesca Scalise
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
| | - Martina Tripicchio
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
| | - Martina Scarpelli
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
| | - Maria Tolomeo
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
| | - Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Cesare Indiveri
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; (T.M.); (M.S.); (M.T.); (M.S.); (M.T.); (L.P.)
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
3
|
Scanga R, Scalise M, Marino N, Parisi F, Barca D, Galluccio M, Brunocilla C, Console L, Indiveri C. LAT1 (SLC7A5) catalyzes copper(histidinate) transport switching from antiport to uniport mechanism. iScience 2023; 26:107738. [PMID: 37692288 PMCID: PMC10492218 DOI: 10.1016/j.isci.2023.107738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023] Open
Abstract
LAT1 (SLC7A5) is one of the most studied membrane transporters due to its relevance to physiology in supplying essential amino acids to brain and fetus, and to pathology being linked to nervous or embryo alterations; moreover, LAT1 over-expression is always associated with cancer development. Thus, LAT1 is exploited as a pro-drug vehicle and as a target for anti-cancer therapy. We here report the identification of a new substrate with pathophysiological implications, i.e., Cu-histidinate, and an unconventional uniport mechanism exploited for the Cu-histidinate transport. Crystals of the monomeric species Cu(His)2 were obtained in our experimental conditions and the actual transport of the complex was evaluated by a combined strategy of bioinformatics, site-directed mutagenesis, radiolabeled transport, and mass spectrometry analysis. The LAT1-mediated transport of Cu(His)2 may have profound implications for both the treatment of copper dysmetabolism diseases, such as the rare Menkes disease, and of cancer as an alternative to platinum-based therapies.
Collapse
Affiliation(s)
- Raffaella Scanga
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Nadia Marino
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Francesco Parisi
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Donatella Barca
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Chiara Brunocilla
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy
| |
Collapse
|
4
|
Ono S, Ogura J, Sugiura H, Yamauchi M, Tanaka A, Sato T, Maekawa M, Yamaguchi H, Mano N. Glutathione depletion results in S-nitrosylation of protein disulfide isomerase in neuroblastoma cells. Life Sci 2023; 316:121442. [PMID: 36708988 DOI: 10.1016/j.lfs.2023.121442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
AIMS Protein disulfide isomerase (PDI) is an essential enzyme involved in oxidative protein folding. PDI is S-nitrosylated in the brains of Alzheimer's disease patients, and S-nitrosylated PDI is considered one of main causes of Alzheimer's disease. However, the mechanisms underlying PDI S-nitrosylation have not yet been elucidated. Because glutathione (GSH) depletion is a pathological feature of Alzheimer's disease, we investigated the effect of GSH depletion on the S-nitrosylation level of PDI. MAIN METHODS SH-SY5Y cells, which is a human derived neuroblastoma cells, were used in this study. Glutamate and buthionine sulfoximine (BSO) were used as GSH depletors. S-nitrosylated PDI was detected by biotin-switch assay. KEY FINDINGS GSH depletion by glutamate, a cystine/glutamate antiporter xCT inhibitor, increased S-nitrosylated PDI at C343 in SH-SY5Y cells, and induced IRE1α phosphorylation. BSO, a γ-glutamylcysteine synthetase inhibitor, also increased S-nitrosylated PDI and phosphorylated IRE1α upon GSH depletion. Because S-nitrosylated PDI at C343 is stable in neuro cells, S-nitrosylated PDI by GSH depletion progresses to neurodegeneration by the induction of endoplasmic reticulum stress via phosphorylated IRE1α signaling from the early to late stage. Furthermore, treatment with neohesperidin, but not N-acetylcysteine (NAC), improved PDI S-nitrosylation level in GSH-depleted SH-SY5Y cells because nitrosylated compound of NAC induces PDI S-nitrosylation. SIGNIFICANCE The results of our study provide a new insight into the mechanisms of neurodegeneration, and may be useful for the development of drugs for Alzheimer's diseases.
Collapse
Affiliation(s)
- Shinji Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Jiro Ogura
- Department of Pharmacy, Yamagata University Hospital, Yamagata, Japan.
| | - Hiroki Sugiura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Minami Yamauchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Atsushi Tanaka
- Research Institute of Medical Sciences, Yamagata University School of Medicine, Yamagata, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Masamitsu Maekawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmacy, Yamagata University Hospital, Yamagata, Japan
| | - Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|