1
|
Ma X, Duan C, Wang X, Tao Y, Yang L, Teng Y, Pan Y, Zhang M, Xu J, Sheng J, Wang X, Jin P. Human gut microbiota adaptation to high-altitude exposure: longitudinal analysis over acute and prolonged periods. Microbiol Spectr 2025:e0291624. [PMID: 40257273 DOI: 10.1128/spectrum.02916-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
This study investigated the longitudinal effects of acute (7-day) and prolonged (3-month) high-altitude exposure on gut microbiota in healthy adult males, addressing the limited data available in human populations. A cohort of 406 healthy adult males was followed, and fecal samples were collected at three time points: baseline at 800 m (406 samples), 7 days after ascending to 4,500 m (406 samples), and 2 weeks post-return to 800 m following 3 months at high altitude (186 samples). High-throughput 16S ribosomal DNA sequencing was employed to analyze microbiota composition and diversity. Results revealed significant changes in alpha- and beta-diversity, with acute high-altitude exposure inducing more pronounced effects compared to prolonged exposure. Specifically, acute exposure increased opportunistic pathogens (Ruminococcus and Oscillibacter) but decreased beneficial short-chain fatty acid producers (Faecalibacterium and Bifidobacterium). Notably, these changes in microbiota persisted even after returning to low altitude, indicating long-term remodeling. Functional analyses revealed substantial changes in metabolic pathways, suggesting microbiota-driven adaptations to energy utilization under high-altitude hypoxic conditions. In summary, acute high-altitude exposure caused dramatic changes in gut microbiota, while prolonged exposure led to structural and functional reshaping. These findings enhance our understanding of how high-altitude environments reshape gut microbiota. IMPORTANCE This study is the first to investigate the impact of high-altitude exposure on gut microbiota adaptation in a large-scale longitudinal cohort. It seeks to enhance understanding of how high-altitude environments reshape gut microbiota. Acute exposure to high altitude significantly affected both α-diversity and β-diversity of gut microbiota, with acute exposure causing more pronounced changes than prolonged adaptation, indicating temporary disruptions in microbial communities. Notable shifts in microbial abundance were observed, including increased levels of genera linked to hypoxic stress (e.g., Gemmiger, Ruminococcus, and Parabacteroides) and decreased levels of beneficial bacteria (e.g., Faecalibacterium, Roseburia, and Bifidobacterium), suggesting possible adverse health effects. Functional analysis indicated changes in metabolism-related pathways post-exposure, supporting the idea that high-altitude adaptations involve metabolic adjustments for energy management. These findings enhance understanding of high-altitude physiology, illustrating the role of gut microbiota in hypoxic health.
Collapse
Affiliation(s)
- Xianzong Ma
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | | | - Xiaoying Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yurong Tao
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lang Yang
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yongsheng Teng
- Department of Gastroenterology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Mingjie Zhang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianqiu Sheng
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Jin
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
2
|
Khalilpour J, Soltani Zangbar H, Alipour MR, Shahabi P. The hypoxic respiratory response of the pre-Bötzinger complex. Heliyon 2024; 10:e34491. [PMID: 39114066 PMCID: PMC11305331 DOI: 10.1016/j.heliyon.2024.e34491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Since the discovery of the pre-Bötzinger Complex (preBötC) as a crucial region for generating the main respiratory rhythm, our understanding of its cellular and molecular aspects has rapidly increased within the last few decades. It is now apparent that preBötC is a highly flexible neuronal network that reconfigures state-dependently to produce the most appropriate respiratory output in response to various metabolic challenges, such as hypoxia. However, the responses of the preBötC to hypoxic conditions can be varied based on the intensity, pattern, and duration of the hypoxic challenge. This review discusses the preBötC response to hypoxic challenges at the cellular and network level. Particularly, the involvement of preBötC in the classical biphasic response of the respiratory network to acute hypoxia is illuminated. Furthermore, the article discusses the functional and structural changes of preBötC neurons following intermittent and sustained hypoxic challenges. Accumulating evidence shows that the preBötC neural circuits undergo substantial changes following hypoxia and contribute to several types of the respiratory system's hypoxic ventilatory responses.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Ma J, Ma Y, Yi J, Lei P, Fang Y, Wang L, Liu F, Luo L, Zhang K, Jin L, Yang Q, Sun D, Zhang C, Wu D. Rapid altitude displacement induce zebrafish appearing acute high altitude illness symptoms. Heliyon 2024; 10:e28429. [PMID: 38590888 PMCID: PMC10999933 DOI: 10.1016/j.heliyon.2024.e28429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Rapid ascent to high-altitude areas above 2500 m often leads to acute high altitude illness (AHAI), posing significant health risks. Current models for AHAI research are limited in their ability to accurately simulate the high-altitude environment for drug screening. Addressing this gap, a novel static self-assembled water vacuum transparent chamber was developed to induce AHAI in zebrafish. This study identified 6000 m for 2 h as the optimal condition for AHAI induction in zebrafish. Under these conditions, notable behavioral changes including slow movement, abnormal exploration behavior and static behavior in the Novel tank test. Furthermore, this model demonstrated changes in oxidative stress-related markers included increased levels of malondialdehyde, decreased levels of glutathione, decreased activities of superoxide dismutase and catalase, and increased levels of inflammatory markers IL-6, IL-1β and TNF-α, and inflammatory cell infiltration and mild edema in the gill tissue, mirroring the clinical pathophysiology observed in AHAI patients. This innovative zebrafish model not only offers a more accurate representation of the high-altitude environment but also provides a high-throughput platform for AHAI drug discovery and pathogenesis research.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Li Luo
- Affiliated Dongguang Hospital, Southern Medical University, Dongguang, 523059, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Chi Zhang
- Department of Clinical Translational Research, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Dejun Wu
- Emergency Department, Quzhou People's Hospital, Quzhou, 324000, China
| |
Collapse
|
4
|
Xu J, Yu W, Li N, Li S, Wang X, Gao C, Liu FY, Ji X, Ren C. The impact of high-altitude and cold environment on brain and heart damage in rats with hemorrhagic shock. Brain Circ 2024; 10:174-183. [PMID: 39036291 PMCID: PMC11259326 DOI: 10.4103/bc.bc_24_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Hemorrhagic shock (HS) causes severe organ damage, worsened by high-altitude conditions with lower oxygen and temperatures. Existing research lacks specific insights on brain and heart damage under these conditions. This study hypothesizes that high-altitude and cold (HAC) environments exacerbate HS-induced damage in the brain and heart, aiming to improve treatment strategies. MATERIALS AND METHODS Twenty-four male Sprague-Dawley (SD) rats (200-250 g of weight) were randomly assigned into sham, HS + normal, HS + HAC (4,000 m), and HS + HAC (6,000 m). The HS model was established in SD rats (35% loss of total blood volume), and histopathological injuries of the brain and heart were detected using hematoxylin and eosin staining, Sirius red staining, and immunohistochemistry. Apoptosis of the brain and heart tissues was detected by terminal transferase-mediated dUTP nick end labeling (TUNEL) immunofluorescence staining. To determine the levels of tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), monocyte chemoattractant protein-1 (Mcp-1), BCL2-associated X (BAX), and myeloid cell leukemia-1 (Mcl-1) protein, western blotting assay was used. RESULTS The HAC environment induced pathological damage to the brain and heart and aggravated the degree of cardiac fibrosis in HS rats. However, it did not cause apoptosis of the brain and heart. In addition, it upregulated TNF-α, IFN-γ, Mcp-1, and BAX protein levels, but downregulated Mcl-1 protein levels (P < 0.05). CONCLUSIONS The HAC environment aggravated the degree of brain and heart damage in HS rats, which may be related to neuron nucleus pyknosis, myocardial fibrosis, and inflammatory and apoptosis activation.
Collapse
Affiliation(s)
- Jun Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Wantong Yu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Feng-Yong Liu
- Department of Interventional Radiology, Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Center of Stroke, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Zhang H, Ma X, Xu J, Jin P, Yang L, Pan Y, Yin F, Zhang J, Wang J, Yu D, Wang X, Zhang M, Wang X, Wang D, Sheng J. Serum metabolomics of hyperbilirubinemia and hyperuricemia in the Tibetan plateau has unique characteristics. Sci Rep 2023; 13:12772. [PMID: 37550384 PMCID: PMC10406831 DOI: 10.1038/s41598-023-40027-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
Few studies have provided data on the metabolomics characteristics of metabolic diseases such as hyperuricemia and hyperbilirubinemia in the Tibetan plateau. In the current study, we sought to investigate the serum metabolomics characteristics of hyperbilirubinemia and hyperuricemia in the Tibetan plateau, with the aim to provide a basis for further research on their pathogenesis, prevention, and treatment. The study participants were born in low-altitude areas below 1000 m and had no prior experience living in a high-altitude area before entering Golmud, Tibet (average elevation: 3000 m) and Yushu, Qinghai (average elevation: 4200 m). Thirty-four participants with hyperbilirubinemia (18 in Golmud and 16 in Yushu), 24 participants with hyperuricemia, and 22 healthy controls were enrolled. The serum samples of subjects were separated and then sent to a local tertiary hospital for biochemical examination. Serum widely targeted technology, based on the ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) platform, was used to detect serum metabolites and differential metabolites. Compared to the healthy controls, hyperbilirubinemia patients from Golmud showed 19 differential metabolites, hyperbilirubinemia patients from Yushu showed 12 differential metabolites, and hyperuricemia patients from Yushu showed 23 differential metabolites. Compared to the hyperbilirubinemia patients from Golmud that is at a low altitude, the Yushu groups had 33 different metabolites. Differential metabolites are primarily classified into amino acids and their derivatives, nucleotides and their derivatives, organic acids and their derivatives, and lipids/fatty acids. These are related to metabolic pathways such as caffeine metabolism, arachidonic acid metabolism, and tyrosine metabolism. Hyperbilirubinemia and hyperuricemia in the Tibetan plateau have unique serum metabolomics characteristics. Glycine derivatives and arachidonic acid and its derivatives were associated with plateau hyperbilirubinemia, and vanillic acid and pentadecafluorooctanoic acid were associated with plateau hyperuricemia.
Collapse
Affiliation(s)
- Heng Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Xianzong Ma
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Peng Jin
- Medical School of Chinese PLA, Beijing, 100853, China
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lang Yang
- Medical School of Chinese PLA, Beijing, 100853, China
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuanming Pan
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Fumei Yin
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Jie Zhang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Jiheng Wang
- Medical School of Chinese PLA, Beijing, 100853, China
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Dongliang Yu
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Xiaoying Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Mingjie Zhang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China.
| | - Dezhi Wang
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China.
| | - Jianqiu Sheng
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No.5 Nanmencang, Beijing, 100700, China.
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Wang M, Lan D, Dandu C, Ding Y, Ji X, Meng R. Normobaric oxygen may attenuate the headache in patients with patent foramen povale and migraine. BMC Neurol 2023; 23:44. [PMID: 36707824 PMCID: PMC9881355 DOI: 10.1186/s12883-023-03059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSES There has been both great interest in and skepticism about the strategies for headache inhibition in patients with patent foramen ovale and migraines (PFO-migraine). Furthermore, many questions remain about the fundamental pathophysiology of PFO-migraines. Herein, the inhibiting effect of normobaric oxygenation (NBO) on PFO-migraine was analyzed. METHODS This real-world self-control study consecutively enrolled patients during the ictal phase of migraines who had patent foramen ovale (PFO) confirmed by Trans esophageal Ultrasound(TEE). After comparing the baseline arterial oxygen partial pressure (PaO2) in their blood gas with that of healthy volunteers, all the patients with PFO-migraine underwent treatment with NBO (8 L/min. for 1 h/q8h) inhalation through a mask. Their clinical symptoms, blood gas, and electroencephalograph (EEG) prior to and post-NBO were compared. RESULTS A total of 39 cases with PFO-migraine (in which 36% of participants only had a small-aperture of PFO) and 20 non-PFO volunteers entered the final analysis. Baseline blood gas analysis results showed that the PaO2 in patients with PFO-migraine were noticeably lower than PaO2 levels in non-PFO volunteers. After all patients with PFO-migraines underwent NBO treatment, 29(74.4%) of them demonstrated dramatic headache attenuation and a remarkable increase in their arterial PaO2 levels after one time treatment of NBO inhalation (p < 0.01). The arterial PaO2 levels in these patients gradually went down during the following 4 h after treatment. 5 patients finished their EEG scans prior to and post-NBO, and 4(80%) were found to have more abnormal slow waves in their baseline EEG maps. In the follow up EEG maps post-NBO treatment for these same 4 patients, the abnormal slow waves disappeared remarkably. CONCLUSIONS Patients with PFO-migraine may derive benefit from NBO treatment. PFOs result in arterial hypoxemia due to mixing of venous blood, which ultimately results in brain hypoxia and migraines. This series of events may be the key pathologic link explaining how PFOs lead to migraines. NBO use may attenuate the headaches from migraines by correcting the hypoxemia.
Collapse
Affiliation(s)
- Mengqi Wang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XAdvanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053 China ,grid.413259.80000 0004 0632 3337National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Duo Lan
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XAdvanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053 China ,grid.413259.80000 0004 0632 3337National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Chaitu Dandu
- grid.254444.70000 0001 1456 7807Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Yuchuan Ding
- grid.254444.70000 0001 1456 7807Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Xunming Ji
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XAdvanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053 China ,grid.413259.80000 0004 0632 3337National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Ran Meng
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XAdvanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053 China ,grid.413259.80000 0004 0632 3337National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| |
Collapse
|