1
|
Zhou Y, Chen Y, Liang S, Li Y, Zhao C, Wu Z. Association between potassium fluctuation and in-hospital mortality in acute myocardial infarction patients: a retrospective analysis of the MIMIC-IV database. Clin Res Cardiol 2025:10.1007/s00392-025-02613-8. [PMID: 39939529 DOI: 10.1007/s00392-025-02613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Serum potassium levels are recognized for their prognostic significance in patients presenting with acute myocardial infarction (AMI). However, the correlation between potassium level fluctuations and mortality rates among AMI patients remains unclear. METHODS A retrospective cohort study was conducted using the MIMIC-IV database, including deidentified data from patients admitted to the Beth Israel Deaconess Medical Center from 2008 to 2022. Potassium fluctuation was assessed using parameters including mean postadmission serum potassium levels (K+[mean]), first measurable value upon admission (K+[admission]), minimum (K+[min]) and maximum (K+[max]) measurable values, and coefficient of variation (K+[CV]). The primary outcome was all-cause in-hospital mortality; secondary outcomes included ventricular tachycardia or fibrillation (VT/VF) and cardiac arrest. Restricted cubic spline models and logistic regression models were used to assess the associations between potassium fluctuation and clinical outcomes. RESULTS A J-shaped correlation between serum potassium levels and the risk of in-hospital mortality was identified. Both high and low potassium levels were significantly associated with increased mortality. Specifically, K+[mean] levels below 3.5 mmol/L and above 4.5 mmol/L were associated with higher mortality. Elevated K+[CV] values were also associated with higher in-hospital mortality in both univariate and multivariate analyses. Increased potassium variability was correlated with elevated risks of both VT/VF and cardiac arrest. CONCLUSIONS Serum potassium fluctuation is an independent predictive factor for in-hospital mortality among AMI patients. These findings underscore the importance of maintaining potassium homeostasis in the management of AMI, suggesting that monitoring and stabilizing potassium levels are crucial for reducing in-hospital mortality.
Collapse
Affiliation(s)
- Ying Zhou
- Department of VIP Medical Service Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yang Chen
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Shangyan Liang
- Department of VIP Medical Service Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yanling Li
- Department of Emergency, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Changlin Zhao
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| | - Zhen Wu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
2
|
Coleman JA, Doste R, Ashkir Z, Coppini R, Sachetto R, Watkins H, Raman B, Bueno-Orovio A. Mechanisms of ischaemia-induced arrhythmias in hypertrophic cardiomyopathy: a large-scale computational study. Cardiovasc Res 2024; 120:914-926. [PMID: 38646743 PMCID: PMC11218689 DOI: 10.1093/cvr/cvae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024] Open
Abstract
AIMS Lethal arrhythmias in hypertrophic cardiomyopathy (HCM) are widely attributed to myocardial ischaemia and fibrosis. How these factors modulate arrhythmic risk remains largely unknown, especially as invasive mapping protocols are not routinely used in these patients. By leveraging multiscale digital twin technologies, we aim to investigate ischaemic mechanisms of increased arrhythmic risk in HCM. METHODS AND RESULTS Computational models of human HCM cardiomyocytes, tissue, and ventricles were used to simulate outcomes of Phase 1A acute myocardial ischaemia. Cellular response predictions were validated with patch-clamp studies of human HCM cardiomyocytes (n = 12 cells, N = 5 patients). Ventricular simulations were informed by typical distributions of subendocardial/transmural ischaemia as analysed in perfusion scans (N = 28 patients). S1-S2 pacing protocols were used to quantify arrhythmic risk for scenarios in which regions of septal obstructive hypertrophy were affected by (i) ischaemia, (ii) ischaemia and impaired repolarization, and (iii) ischaemia, impaired repolarization, and diffuse fibrosis. HCM cardiomyocytes exhibited enhanced action potential and abnormal effective refractory period shortening to ischaemic insults. Analysis of ∼75 000 re-entry induction cases revealed that the abnormal HCM cellular response enabled establishment of arrhythmia at milder ischaemia than otherwise possible in healthy myocardium, due to larger refractoriness gradients that promoted conduction block. Arrhythmias were more easily sustained in transmural than subendocardial ischaemia. Mechanisms of ischaemia-fibrosis interaction were strongly electrophysiology dependent. Fibrosis enabled asymmetric re-entry patterns and break-up into sustained ventricular tachycardia. CONCLUSION HCM ventricles exhibited an increased risk to non-sustained and sustained re-entry, largely dominated by an impaired cellular response and deleterious interactions with the diffuse fibrotic substrate.
Collapse
Affiliation(s)
- James A Coleman
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Ruben Doste
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Zakariye Ashkir
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Raffaele Coppini
- Department of NeuroFarBa, University of Florence, Florence, Italy
| | - Rafael Sachetto
- Department of Computer Science, Federal University of São João del-Rei, São João del-Rei, Minas Gerais, Brazil
| | - Hugh Watkins
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
3
|
Shen Y, Yu Y, Zhang X, Hu B, Wang N. Progress of nanomaterials in the treatment of thrombus. Drug Deliv Transl Res 2024; 14:1154-1172. [PMID: 38006448 DOI: 10.1007/s13346-023-01478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Thrombus has long been the major contributor of death and disability because it can cause adverse effects to varying degrees on the body, resulting in vascular blockage, embolism, heart valve deformation, widespread bleeding, etc. However, clinically, conventional thrombolytic drug treatments have hemorrhagic complication risks and easy to miss the best time of treatment window. Thus, it is an urgent need to investigate newly alternative treatment strategies that can reduce adverse effects and improve treatment effectiveness. Drugs based on nanomaterials act as a new biomedical strategy and promising tools, and have already been investigated for both diagnostic and therapeutic purposes in thrombus therapy. Recent studies have some encouraging progress. In the present review, we primarily concern with the latest developments in the areas of nanomedicines targeting thrombosis therapy. We present the thrombus' formation, characteristics, and biomarkers for diagnosis, overview recent emerging nanomedicine strategies for thrombus therapy, and focus on the future design directions, challenges, and prospects in the nanomedicine application in thrombus therapy.
Collapse
Affiliation(s)
- Yetong Shen
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- College of Life and Health Sciences, Northeastern University, Shenyang, 110167, China
| | - Yang Yu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
| | - Ning Wang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
- Department of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, 110122, China.
| |
Collapse
|
4
|
Bernikova O, Durkina A, Gonotkov M, Minnebaeva E, Arteyeva N, Azarov J. Formation of a border ischemic zone depends on plasma potassium concentration. Can J Physiol Pharmacol 2024; 102:331-341. [PMID: 38118123 DOI: 10.1139/cjpp-2023-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Extracellular potassium concentration might modify electrophysiological properties in the border zone of ischemic myocardium. We evaluated the depolarization and repolarization characteristics across the ischemic-normal border under [K+] variation. Sixty-four-lead epicardial mapping was performed in 26 rats ([K+] 2.3-6.4 mM) in a model of acute ischemia/reperfusion. The animals with [K+] < 4.7 mM (low-normal potassium) had an ischemic zone with ST-segment elevation and activation delay, a border zone with ST-segment elevation and no activation delay, and a normal zone without electrophysiological abnormalities. The animals with [K+] >4.7 mM (normal-high potassium) had only the ischemic and normal zones and no transitional area. Activation-repolarization intervals and local conduction velocities were inversely associated with [K+] in linear regression analysis with adjustment for the zone of myocardium. The reperfusion extrasystolic burden (ESB) was greater in the low-normal as compared to normal-high potassium animals. Ventricular tachycardia/fibrillation incidence did not differ between the groups. In patch-clamp experiments, hypoxia shortened action potential duration at 5.4 mM but not at 1.3 mM of [K+]. IK(ATP) current was lower at 1.3 mM than at 5.4 mM of [K+]. We conclude that the border zone formation in low-normal [K+] was associated with attenuation of IK(ATP) response to hypoxia and increased reperfusion ESB.
Collapse
Affiliation(s)
- Olesya Bernikova
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
- Department of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
| | - Aleksandra Durkina
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Mikhail Gonotkov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Elena Minnebaeva
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
- Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
| | - Natalia Arteyeva
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Jan Azarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
- Department of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
- Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| |
Collapse
|
5
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
6
|
Omar R, Tavolacci SC, Liou L, Villavisanis DF, Broza YY, Haick H. Real-time prognostic biomarkers for predicting in-hospital mortality and cardiac complications in COVID-19 patients. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002836. [PMID: 38446834 PMCID: PMC10917247 DOI: 10.1371/journal.pgph.0002836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Hospitalized patients with Coronavirus disease 2019 (COVID-19) are highly susceptible to in-hospital mortality and cardiac complications such as atrial arrhythmias (AA). However, the utilization of biomarkers such as potassium, B-type natriuretic peptide, albumin, and others for diagnosis or the prediction of in-hospital mortality and cardiac complications has not been well established. The study aims to investigate whether biomarkers can be utilized to predict mortality and cardiac complications among hospitalized COVID-19 patients. Data were collected from 6,927 hospitalized COVID-19 patients from March 1, 2020, to March 31, 2021 at one quaternary (Henry Ford Health) and five community hospital registries (Trinity Health Systems). A multivariable logistic regression prediction model was derived using a random sample of 70% for derivation and 30% for validation. Serum values, demographic variables, and comorbidities were used as input predictors. The primary outcome was in-hospital mortality, and the secondary outcome was onset of AA. The associations between predictor variables and outcomes are presented as odds ratio (OR) with 95% confidence intervals (CIs). Discrimination was assessed using area under ROC curve (AUC). Calibration was assessed using Brier score. The model predicted in-hospital mortality with an AUC of 90% [95% CI: 88%, 92%]. In addition, potassium showed promise as an independent prognostic biomarker that predicted both in-hospital mortality, with an AUC of 71.51% [95% Cl: 69.51%, 73.50%], and AA with AUC of 63.6% [95% Cl: 58.86%, 68.34%]. Within the test cohort, an increase of 1 mEq/L potassium was associated with an in-hospital mortality risk of 1.40 [95% CI: 1.14, 1.73] and a risk of new onset of AA of 1.55 [95% CI: 1.25, 1.93]. This cross-sectional study suggests that biomarkers can be used as prognostic variables for in-hospital mortality and onset of AA among hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Rawan Omar
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sooyun Caroline Tavolacci
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lathan Liou
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Dillan F. Villavisanis
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yoav Y. Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Ifedili I, Maturana M, Kayali S, Levine Y, Kabra R, Jha SK. A case of short QT-interval postventricular arrhythmia arrest from Torsade De Pointes, a new phenotype, or the result of tachycardia-mediated imbalance. J Cardiovasc Electrophysiol 2024; 35:501-504. [PMID: 38174843 DOI: 10.1111/jce.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION We report the case of an 18-year-old female with recurrent syncope that was discovered to have congenital long QT syndrome (LQTS) and episodes of a transiently short QT interval after spontaneous termination of polymorphic ventricular tachycardia. METHODS & RESULTS A cardiac event monitor revealed a long QT interval and initiation of polymorphic ventricular tachycardia by a premature ventricular complex on the preceding T-wave. After 1 minute of ventricular fibrillation, her arrhythmia spontaneously terminated with evidence of a short QT interval. CONCLUSIONS A transient, potentially artificial, short QT interval following Torsades de Pointes can occur in patients with LQTS.
Collapse
Affiliation(s)
- Ikechukwu Ifedili
- Department of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Miguel Maturana
- Department of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sharif Kayali
- Department of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yehoshua Levine
- Department of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rajesh Kabra
- Department of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Kansas City Heart Rhythm Institute, Overland Park, Kansas, USA
| | - Sunil K Jha
- Department of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|