1
|
Zhao Q, Pan Y, Zhang D, Zhou X, Sun L, Xu Z, Zhang Y. The active ingredient β-sitosterol in Ganoderma regulates CHRM2-mediated aerobic glycolysis to induce apoptosis of lung adenocarcinoma cells. Genes Genet Syst 2025; 100:n/a. [PMID: 39537174 DOI: 10.1266/ggs.24-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
β-sitosterol is a natural plant steroidal compound with anti-cancer properties against various tumors. This work explored the inhibitory effect of β-sitosterol on the progression of lung adenocarcinoma (LUAD) and further analyzed its targets. We applied network pharmacology to obtain the components and targets of Ganoderma spore powder. The biological functions of β-sitosterol and CHRM2 were studied using the homograft mouse model and a series of in vitro experiments involving quantitative reverse transcription polymerase chain reaction, western blot, CCK-8, flow cytometry, immunohistochemistry and immunofluorescence. The regulatory influence of β-sitosterol on the glycolysis pathway was validated by measuring glucose consumption and lactate production, as well as the extracellular acidification rate and oxygen consumption rate. We found that CHRM2 binds directly to β-sitosterol. In vitro, CHRM2 overexpression repressed the apoptosis rate and expression of apoptosis-related proteins in LUAD cells, and promoted glycolysis, while the addition of lonidamine attenuated the apoptosis-inhibiting effect conferred by CHRM2 overexpression. Furthermore, β-sitosterol hindered glycolysis as well as the growth of tumors in vitro and in vivo. CHRM2 overexpression reversed the effect of β-sitosterol on the biological behavior of LUAD cells. Our results emphasize that CHRM2 is a direct target of β-sitosterol in LUAD cells. β-sitosterol can repress the glycolysis pathway, exerting an anti-tumor effect. These findings provide new support for the use of β-sitosterol as a therapeutic agent for LUAD.
Collapse
Affiliation(s)
- Qiong Zhao
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Yuting Pan
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Danjia Zhang
- Department of Traditional Chinese Medicine, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Xiaolian Zhou
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Liangyun Sun
- Department of Thoracic Oncology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College
| | - Zihan Xu
- MPA, Cornell University, Brooks School
| | | |
Collapse
|
2
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
3
|
Adapa SR, Sami A, Meshram P, Ferreira GC, Jiang RHY. Uncovering Porphyrin Accumulation in the Tumor Microenvironment. Genes (Basel) 2024; 15:961. [PMID: 39062740 PMCID: PMC11275590 DOI: 10.3390/genes15070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Heme, an iron-containing tetrapyrrole, is essential in almost all organisms. Heme biosynthesis needs to be precisely regulated particularly given the potential cytotoxicity of protoporphyrin IX, the intermediate preceding heme formation. Here, we report on the porphyrin intermediate accumulation within the tumor microenvironment (TME), which we propose to result from dysregulation of heme biosynthesis concomitant with an enhanced cancer survival dependence on mid-step genes, a process we recently termed "Porphyrin Overdrive". Specifically, porphyrins build up in both lung cancer cells and stromal cells in the TME. Within the TME's stromal cells, evidence supports cancer-associated fibroblasts (CAFs) actively producing porphyrins through an imbalanced pathway. Conversely, normal tissues exhibit no porphyrin accumulation, and CAFs deprived of tumor cease porphyrin overproduction, indicating that both cancer and tumor-stromal porphyrin overproduction is confined to the cancer-specific tissue niche. The clinical relevance of our findings is implied by establishing a correlation between imbalanced porphyrin production and overall poorer survival in more aggressive cancers. These findings illuminate the anomalous porphyrin dynamics specifically within the tumor microenvironment, suggesting a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Swamy R. Adapa
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Abdus Sami
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (G.C.F.)
| | - Pravin Meshram
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (G.C.F.)
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Rays H. Y. Jiang
- USF Genomics Program, Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
4
|
Qian L, Xu Z, Chen Y, Gao Z, Luo T, Wu L, Zheng Y, Chen L, Yuan D, Ren S, Zhu Y. Drug pair of Cornus officinalis and Radix achyranthis bidentatae improves renal injury of hypertension by regulating metabolic reprogramming mediated by eNOS. Heliyon 2024; 10:e33369. [PMID: 39022064 PMCID: PMC11253524 DOI: 10.1016/j.heliyon.2024.e33369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE To explore the effects and possible mechanisms of the drug pair Cornus officinalis and Radix achyranthis bidentatae (SYR-NX) on improving hypertensive kidney damage. METHOD SYR-NX, a formulation of Cornus officinalis and Radix Achyranthis Bidentatae with a dose ratio 1:2.5, was used in this experiment. We investigated the effects of SYR-NX on spontaneously hypertensive rats (SHR) fed with a high-salt diet and Human Kidney-2 (HK2) cells exposed to hypoxia. After 8 weeks of treatment with SYR-NX, blood pressure was tested, and β 2-Microglobulin(β2-MG), blood creatinine (S-cr), endothelial nitric oxide synthase (eNOS), nicotinamide adenine dinucleotide phosphate (NADPH), M2 pyruvate kinase (PKM2), adenosine triphosphate (ATP), pyruvate, lactate, connective tissue growth factor (CTGF) and tumor necrosis factor-α (TNF-α)were measured. HK2 cells pre-treated with SYR-NX were cultured in a three-gas hypoxic incubator chamber (5 % CO2, 1 % O2, 94 % N2) for 12 h, and then eNOS, PKM2, NADPH, ATP, pyruvate, lactate, CTGF and TNF-α were assessed. RESULTS SYR-NX significantly reduced SBP, DBP, β2-MG, S-cr, PKM2, pyruvate, lactate, CTGF and TNF-α, and increased eNOS, NADPH, and ATP. CONCLUSION SYR-NX can regulate metabolic reprogramming through eNOS and improves hypertensive kidney injury.
Collapse
Affiliation(s)
- Lichao Qian
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing, University of Chinese Medicine, Nanjing, Jiangsu, 210022, China
| | - Zhongchi Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Yanran Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Zhao Gao
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing, University of Chinese Medicine, Nanjing, Jiangsu, 210022, China
| | - Tianjiong Luo
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing, University of Chinese Medicine, Nanjing, Jiangsu, 210022, China
| | - Lihua Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Yawei Zheng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Li Chen
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing, University of Chinese Medicine, Nanjing, Jiangsu, 210022, China
| | - Dongping Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, China
| | - Shuai Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Yinxing Zhu
- Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Jiangsu, 225300, China
| |
Collapse
|
5
|
Ren LK, Lu RS, Fei XB, Chen SJ, Liu P, Zhu CH, Wang X, Pan YZ. Unveiling the role of PYGB in pancreatic cancer: a novel diagnostic biomarker and gene therapy target. J Cancer Res Clin Oncol 2024; 150:127. [PMID: 38483604 PMCID: PMC10940407 DOI: 10.1007/s00432-024-05644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE Pancreatic cancer (PC) is a highly malignant tumor that poses a severe threat to human health. Brain glycogen phosphorylase (PYGB) breaks down glycogen and provides an energy source for tumor cells. Although PYGB has been reported in several tumors, its role in PC remains unclear. METHODS We constructed a risk diagnostic model of PC-related genes by WGCNA and LASSO regression and found PYGB, an essential gene in PC. Then, we explored the pro-carcinogenic role of PYGB in PC by in vivo and in vitro experiments. RESULTS We found that PYGB, SCL2A1, and SLC16A3 had a significant effect on the diagnosis and prognosis of PC, but PYGB had the most significant effect on the prognosis. Pan-cancer analysis showed that PYGB was highly expressed in most of the tumors but had the highest correlation with PC. In TCGA and GEO databases, we found that PYGB was highly expressed in PC tissues and correlated with PC's prognostic and pathological features. Through in vivo and in vitro experiments, we found that high expression of PYGB promoted the proliferation, invasion, and metastasis of PC cells. Through enrichment analysis, we found that PYGB is associated with several key cell biological processes and signaling pathways. In experiments, we validated that the MAPK/ERK pathway is involved in the pro-tumorigenic mechanism of PYGB in PC. CONCLUSION Our results suggest that PYGB promotes PC cell proliferation, invasion, and metastasis, leading to poor patient prognosis. PYGB gene may be a novel diagnostic biomarker and gene therapy target for PC.
Collapse
Affiliation(s)
- Li-Kun Ren
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Ri-Shang Lu
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Xiao-Bin Fei
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Shao-Jie Chen
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Peng Liu
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Chang-Hao Zhu
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550000, China
| | - Xing Wang
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China.
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550000, China.
| | - Yao-Zhen Pan
- College of Clinical Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China.
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550000, China.
| |
Collapse
|