1
|
Owecki W, Wojtowicz K, Nijakowski K. Salivary Extracellular Vesicles in Detection of Cancers Other than Head and Neck: A Systematic Review. Cells 2025; 14:411. [PMID: 40136660 PMCID: PMC11941535 DOI: 10.3390/cells14060411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Cancer is one of the leading causes of death worldwide. Evidence indicates that extracellular vesicles are involved in cancer development and may be used as promising biomarkers in cancer detection. Concomitantly, saliva constitutes a non-invasive and inexpensive source of biomarkers. This systematic review investigates the use of salivary extracellular vesicles in detecting cancers located outside of the head and neck. PubMed, Web of Science, Scopus, and Embase were thoroughly searched from database inception to 16 July 2024. Data from sixteen eligible studies were analyzed, including glioblastoma, lung, esophageal, gastric, prostate, hepatocellular, breast, and pancreatobiliary tract cancers. The findings highlight strong diagnostic potential for lung and esophageal cancers, where specific exosomal RNAs and proteins demonstrated high accuracy in distinguishing cancer patients from healthy individuals. Additionally, biomarkers in glioblastoma showed prognostic value, while those in hepatocellular and pancreatobiliary cancers exhibited potential for early detection. However, gastric and prostate cancer biomarkers showed limited reliability, and breast cancer biomarkers require further validation. In conclusion, salivary extracellular vesicles present potential in non-invasive detection across multiple cancer types; however, their diagnostic power needs further research, including standardization and large-scale validation.
Collapse
Affiliation(s)
- Wojciech Owecki
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- The Student Scientific Society, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
2
|
Gasparello J, Ceccon C, Angerilli V, Comunello T, Sabbadin M, D'Almeida Costa F, Antico A, Luchini C, Parente P, Bergamo F, Lonardi S, Fassan M. Liquid biopsy in gastric cancer: A snapshot of the current state of the art. THE JOURNAL OF LIQUID BIOPSY 2025; 7:100288. [PMID: 40027230 PMCID: PMC11863821 DOI: 10.1016/j.jlb.2025.100288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 03/05/2025]
Abstract
Circulating tumor DNA (ctDNA) is nowadays considered a robust source to search for druggable tumoral genetic alterations, and in some specific settings liquid biopsy (LB) is already part of the diagnostics scenario and it has successfully implemented in the everyday practice. Three strengths make LB an extraordinary tool: i) to represent the complex molecular mosaicism that characterizes spatially heterogeneous malignancies; ii) to monitor in real-time the tumoral molecular landscape (i.e. to depict the longitudinal/temporal tumor evolution); iii) to ensure molecular profiling even in those cases in which tissue sampling is not feasible or not adequate. This review provides a snapshot of the current state of the art concerning ctDNA assay utility in gastric cancer (GC), testing its robustness as marker and seeking to understand the reasons for the delay in its application in clinical practice.
Collapse
Affiliation(s)
| | - Carlotta Ceccon
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Valentina Angerilli
- Department of Medicine - DIMED, University of Padova, Padova, Italy
- Department of Surgical Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Pathology, Nijmegen, the Netherlands
| | - Tatiane Comunello
- Department of Pathology, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Marianna Sabbadin
- Department of Medicine - DIMED, University of Padova, Padova, Italy
- Department of Surgical Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | | | - Antonio Antico
- Department of Clinical Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | | | - Sara Lonardi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Matteo Fassan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
3
|
Jiang W, Yin F, Bian X, Wang Z, Zhang C. The mechanism study of LncRNA AC012181.2 targeting HERPUD1 protein in regulating stromal stem cells participating in metabolic reprogramming for gastric cancer metastasis. Int Immunopharmacol 2025; 148:113978. [PMID: 39879832 DOI: 10.1016/j.intimp.2024.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/31/2025]
Abstract
OBJECTIVE To investigate the role of long non-coding RNAs (lncRNAs) in the metabolic reprogramming of gastric cancer through their regulation of mesenchymal stem cells (MSCs) and HERPUD1 protein targets, aiming to elucidate mechanisms that could lead to novel therapeutic strategies. METHOD The RNA-seq was performed on BGC and hMSC-BGC cells to perform LncRNA screening. And we employed cell culture techniques using hMSC-BM and BGC823 cells, treated with various genetic interventions including siRNA and overexpression vectors. Techniques such as cell viability assays, quantitative PCR (qPCR), Western blotting, RNA pull-down and RNA-FISH were utilized to validate the interaction between lncRNA AC012181.2 and HERPUD1 protein. Flow cytometry were utilized to analyze the impacts of lncRNA AC012181.2 on gene and protein expression related to cancer metabolism. Additionally, a tumorigenic model in nude mice was used to observe the in vivo effects. RESULT Modulation of AC012181.2 in MSCs significantly affected the proliferation, migration, and invasion capabilities of BGC823 gastric cancer cells. Knockdown of AC012181.2 resulted in reduced tumor growth in mouse models, along with changes in key gene and protein expression levels associated with cancer metabolism. Overexpression of AC012181.2 showed the opposite effect, enhancing tumor growth and altering cellular behaviors and molecular expressions in favor of cancer progression. CONCLUSION The lncRNA AC012181.2 is crucial for gastric cancer metabolic reprogramming by regulating HERPUD1 Protein. Targeting it offers a promising avenue to impact the tumor microenvironment and develop novel gastric cancer therapies.
Collapse
Affiliation(s)
- Weidong Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, No.4026, Yatai Street, Nanguan District, Changchun 130000, China
| | - Fangying Yin
- Department of Pediatrics, The Third Norman Bethune Hospital of Jilin University, Xiantai Street, NO.126, Changchun 130033, China
| | - Xuming Bian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, No.4026, Yatai Street, Nanguan District, Changchun 130000, China
| | - Zhenxiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, No.4026, Yatai Street, Nanguan District, Changchun 130000, China
| | - Chaohe Zhang
- Department of Tumor Hematology, The Second Hospital of Jilin University, No.4026, Yatai Street, Nanguan District, Changchun 130000, China.
| |
Collapse
|
4
|
Kowalczyk A, Wrzecińska M, Gałęska E, Czerniawska-Piątkowska E, Camiña M, Araujo JP, Dobrzański Z. Exosomal ncRNAs in reproductive cancers†. Biol Reprod 2025; 112:225-244. [PMID: 39561105 PMCID: PMC11833474 DOI: 10.1093/biolre/ioae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Extracellular vesicles, particularly exosomes, play a pivotal role in the cellular mechanisms underlying cancer. This review explores the various functions of exosomes in the progression, growth, and metastasis of cancers affecting the male and female reproductive systems. Exosomes are identified as key mediators in intercellular communication, capable of transferring bioactive molecules such as microRNAs, proteins, and other nucleic acids that influence cancer cell behavior and tumor microenvironment interactions. It has been shown that non-coding RNAs transported by exosomes play an important role in tumor growth processes. Significant molecules that may serve as biomarkers in the development and progression of male reproductive cancers include miR-125a-5p, miR-21, miR-375, the miR-371 ~ 373 cluster, and miR-145-5p. For female reproductive cancers, significant microRNAs include miR-26a-5p, miR-148b, miR-205, and miRNA-423-3p. This review highlights the potential of these noncoding RNAs as biomarkers and prognostics in tumor diagnostics. Understanding the diverse roles of exosomes may hold promise for developing new therapeutic strategies and improving treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Alicja Kowalczyk
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marcjanna Wrzecińska
- Department of Ruminant Science, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Elżbieta Gałęska
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Mercedes Camiña
- Department of Physiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose P Araujo
- Mountain Research Centre (CIMO), Instituto Politécnico de Viana do Castelo, Ponte de Lima, Portugal
| | - Zbigniew Dobrzański
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Ding J, Teng Y, Cui R, Liu J, Xiao K, Dong Z, Zhang Y, Xu X. LncRNAs in serum-derived extracellular vesicles are potential biomarker and correlated with immune infiltration in gastric cancer. Front Immunol 2025; 16:1533111. [PMID: 39925803 PMCID: PMC11802516 DOI: 10.3389/fimmu.2025.1533111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Long non-coding RNAs (lncRNAs) in extracellular vesicles (EVs) have been confirmed as effective non-invasive biomarkers for multiple diseases. However, their expression and clinical value in gastric cancer (GC) remain poorly understood. Materials and methods Serum EV RNA was extracted from four patients with GC and four healthy controls, followed by high-throughput RNA sequencing. LncRNAs were further validated in training and validation sets using quantitative real-time reverse transcription polymerase chain reaction. Results A total of 37,684 lncRNAs were obtained, and 10 lncRNAs were selected based on the criteria (P < 0.05 and |log2FoldChange| ≥1). Serum EV lncRNA RMRP, RPPH1, and linc-ROR were significantly higher in patients with GC than in those with chronic gastritis, atypical hyperplasia, or healthy control (all P < 0.05). Three lncRNAs were also significantly correlated with tumor diameter, lymphatic metastasis, distal metastasis, and TNM stage (all P < 0.05). The area under the curve (AUC) values for lncRNA RMRP, RPPH1, and linc-ROR were 0.727, 0.774, and 0.811, respectively. Corresponding sensitivity and specificity were 63.4% and 85.4%, 50.7% and 89.6%, and 78.5% and 66.7%. The combination of these three lncRNAs with carcinoembryonic antigen (CEA) yielded an AUC of 0.909, with a sensitivity and specificity of 83.3% each. Furthermore, high EV linc-ROR and RMRP expression levels were associated with worse disease-free survival and overall survival (OS). Univariate and multivariate Cox regression analyses confirmed that linc-ROR was the only independent prognostic factor for GC. Finally, the lncRNA-miRNA-mRNA network showed that three lncRNAs were predicted to interact with 15 miRNAs and 69 mRNAs. In addition, lncRNA RMRP and linc-ROR were correlated with immune cell infiltration, including neutrophils, central memory CD4 T cells, macrophage, and natural kill T cells. Conclusion EV lncRNAs are prospective biomarker and correlated with immune cell infiltration in GC. It provides a foundation for the development of serum EV-targeted novel biomarkers and immunotherapy targets of GC.
Collapse
Affiliation(s)
- Juan Ding
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yunyan Teng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Rongshu Cui
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Jin Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ke Xiao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
6
|
Zhou Y, Li R. Exosomal miR-502-5p suppresses the progression of gastric cancer by repressing angiogenesis through the Wnt/β-catenin pathway. Ir J Med Sci 2024; 193:2681-2694. [PMID: 39325329 DOI: 10.1007/s11845-024-03789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a significant global health concern, ranking as the fifth most common cancer and the third leading cause of cancer-related deaths. The role of miR-502-5p in various cancers has been studied, but its specific impact on gastric cancer through exosomes is not well understood. This study aimed to investigate the role and mechanism of exosome-derived miR-502-5p in gastric cancer. METHODS Differential expression of miR-502-5p in tissues or serum of GC patients was determined using qRT-PCR. The impact of miR-502-5p on cell proliferation, migration, and invasion was assessed through in vitro and in vivo experiments. The potential of exosome-miR-502-5p to inhibit metastatic ability was also explored by using vivo and vitro assay. Furthermore, the underlying mechanism of miR-502-5p in gastric cancer was investigated using western blotting. RESULTS It was found that miR-502-5p suppressed the proliferation, migration, and invasion of gastric cancer cells. Exosome-miR-502-5p expression was negatively linked to metastatic ability and demonstrated inhibition of metastasis in vitro and in vivo. Additionally, miR-502-5p appeared to inhibit angiogenesis through the Wnt/β-catenin pathway in gastric cancer. CONCLUSIONS Exosomal miR-502-5p acts as a suppressor in the development and progression of gastric cancer, suggesting its potential as a target for anti-cancer therapy or as a diagnostic biomarker.
Collapse
Affiliation(s)
- Yanwu Zhou
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Rong Li
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, People's Republic of China.
| |
Collapse
|
7
|
Luongo M, Laurenziello P, Cesta G, Bochicchio AM, Omer LC, Falco G, Milone MR, Cibarelli F, Russi S, Laurino S. The molecular conversations of sarcomas: exosomal non-coding RNAs in tumor's biology and their translational prospects. Mol Cancer 2024; 23:172. [PMID: 39174949 PMCID: PMC11340101 DOI: 10.1186/s12943-024-02083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Exosomes mediate cell-to-cell crosstalk involving a variety of biomolecules through an intricate signaling network. In recent years, the pivotal role of exosomes and their non-coding RNAs cargo in the development and progression of several cancer types clearly emerged. In particular, tumor bulk and its microenvironment co-evolve through cellular communications where these nanosized extracellular vesicles are among the most relevant actors. Knowledge about the cellular, and molecular mechanisms involved in these communications will pave the way for novel exosome-based delivery of therapeutic RNAs as well as innovative prognostic/diagnostic tools. Despite the valuable therapeutic potential and clinical relevance of exosomes, their role on sarcoma has been vaguely reported because the rarity and high heterogeneity of this type of cancer. Here, we dissected the scientific literature to unravel the multifaceted role of exosomal non-coding RNAs as mediator of cell-to-cell communications in the sarcoma subtypes.
Collapse
Affiliation(s)
- Margherita Luongo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Pasqualina Laurenziello
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Giuseppe Cesta
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Anna Maria Bochicchio
- Experimental Oncology Unit, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Ludmila Carmen Omer
- Experimental Oncology Unit, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | | | | | - Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy.
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), 85028, Italy
| |
Collapse
|
8
|
Bintintan V, Burz C, Pintea I, Muntean A, Deleanu D, Lupan I, Samasca G. The Importance of Extracellular Vesicle Screening in Gastric Cancer: A 2024 Update. Cancers (Basel) 2024; 16:2574. [PMID: 39061213 PMCID: PMC11274824 DOI: 10.3390/cancers16142574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Extracellular vesicles, or EVs, are membrane-bound nanocompartments produced by tumor cells. EVs carry proteins and nucleic acids from host cells to target cells, where they can transfer lipids, proteomes, and genetic material to change the function of target cells. EVs serve as reservoirs for mobile cellular signals. The collection of EVs using less invasive processes has piqued the interest of many researchers. Exosomes carry substances that can suppress the immune system. If the results of exosome screening are negative, immunotherapy will be beneficial for GC patients. In this study, we provide an update on EVs and GC based on ongoing review papers and clinical trials.
Collapse
Affiliation(s)
- Vasile Bintintan
- Department of Surgery 1, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Claudia Burz
- Institute of Oncology “Prof. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.P.); (A.M.); (D.D.)
| | - Irena Pintea
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.P.); (A.M.); (D.D.)
| | - Adriana Muntean
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.P.); (A.M.); (D.D.)
| | - Diana Deleanu
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.P.); (A.M.); (D.D.)
| | - Iulia Lupan
- Department of Molecular Biology, Babes-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.P.); (A.M.); (D.D.)
| |
Collapse
|
9
|
Sun DS, Chang HH. Extracellular vesicles: Function, resilience, biomarker, bioengineering, and clinical implications. Tzu Chi Med J 2024; 36:251-259. [PMID: 38993825 PMCID: PMC11236075 DOI: 10.4103/tcmj.tcmj_28_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 07/13/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key players in intercellular communication, disease pathology, and therapeutic innovation. Initially overlooked as cellular debris, EVs are now recognized as vital mediators of cell-to-cell communication, ferrying a cargo of proteins, nucleic acids, and lipids, providing cellular resilience in response to stresses. This review provides a comprehensive overview of EVs, focusing on their role as biomarkers in disease diagnosis, their functional significance in physiological and pathological processes, and the potential of bioengineering for therapeutic applications. EVs offer a promising avenue for noninvasive disease diagnosis and monitoring, reflecting the physiological state of originating cells. Their diagnostic potential spans a spectrum of diseases, including cancer, cardiovascular disorders, neurodegenerative diseases, and infectious diseases. Moreover, their presence in bodily fluids such as blood, urine, and cerebrospinal fluid enhances their diagnostic utility, presenting advantages over traditional methods. Beyond diagnostics, EVs mediate crucial roles in intercellular communication, facilitating the transfer of bioactive molecules between cells. This communication modulates various physiological processes such as tissue regeneration, immune modulation, and neuronal communication. Dysregulation of EV-mediated communication is implicated in diseases such as cancer, immune disorders, and neurodegenerative diseases, highlighting their therapeutic potential. Bioengineering techniques offer avenues for manipulating EVs for therapeutic applications, from isolation and purification to engineering cargo and targeted delivery systems. These approaches hold promise for developing novel therapeutics tailored to specific diseases, revolutionizing personalized medicine. However, challenges such as standardization, scalability, and regulatory approval need addressing for successful clinical translation. Overall, EVs represent a dynamic frontier in biomedical research with vast potential for diagnostics, therapeutics, and personalized medicine.
Collapse
Affiliation(s)
- Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
10
|
Wang X, Wang C, Han W, Ma C, Sun J, Wang T, Hui Z, Lei S, Wang R. Bibliometric and visualized analysis of global research on microRNAs in gastric cancer: from 2013 to 2023. Front Oncol 2024; 14:1374743. [PMID: 38800413 PMCID: PMC11116657 DOI: 10.3389/fonc.2024.1374743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Gastric cancer (GC) imposes a heavy burden on global public health, and microRNAs (miRNAs) play a crucial role in the diagnosis and treatment of GC. Therefore, it is necessary to clarify the hotspots and frontiers in the field of miRNAs in GC to guide future research. A total of 2,051 publications related to miRNAs in GC from January 2013 to December 2023 were searched from the Web of Science Core Collection database. CiteSpace was used to identify research hotspots and delineate developmental trends. In the past decade, China, Nanjing Medical University, and Ba Yi were the most contributing research country, institute, and author in this field, respectively. The role of miRNAs as biomarkers in GC, the mechanism of miRNAs in the progression of GC, and the impact of the mutual effects between miRNAs and Helicobacter pylori on GC have been regarded as the research hotspots. The mechanisms of miRNAs on glucose metabolism and the application of the roles of circular RNAs as miRNA sponges in GC treatment will likely be frontiers. Overall, this study called for strengthened cooperation to identify targets and therapeutic regimes for local specificity and high-risk GC types, and to promote the translation of research results into clinical practice.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Pediatrics, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Caihua Wang
- School of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wenjin Han
- School of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Congmin Ma
- School of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiaru Sun
- School of Nursing, Xi’an Vocational and Technical College, Xi’an, China
| | - Tianmeng Wang
- School of Nursing, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Zhaozhao Hui
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shuangyan Lei
- Department of Radiotherapy, Shaanxi Cancer Hospital, Xi’an, China
| | - Ronghua Wang
- Department of Pediatrics, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Arrè V, Mastrogiacomo R, Balestra F, Serino G, Viti F, Rizzi F, Curri ML, Giannelli G, Depalo N, Scavo MP. Unveiling the Potential of Extracellular Vesicles as Biomarkers and Therapeutic Nanotools for Gastrointestinal Diseases. Pharmaceutics 2024; 16:567. [PMID: 38675228 PMCID: PMC11055174 DOI: 10.3390/pharmaceutics16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Extracellular vesicles (EVs), acting as inherent nanocarriers adept at transporting a range of different biological molecules such as proteins, lipids, and genetic material, exhibit diverse functions within the gastroenteric tract. In states of normal health, they participate in the upkeep of systemic and organ homeostasis. Conversely, in pathological conditions, they significantly contribute to the pathogenesis of gastrointestinal diseases (GIDs). Isolating EVs from patients' biofluids facilitates the discovery of new biomarkers that have the potential to offer a rapid, cost-effective, and non-invasive method for diagnosing and prognosing specific GIDs. Furthermore, EVs demonstrate considerable therapeutic potential as naturally targeted physiological carriers for the intercellular delivery of therapeutic cargo molecules or as nanoscale tools engineered specifically to regulate physio-pathological conditions or disease progression. Their attributes including safety, high permeability, stability, biocompatibility, low immunogenicity, and homing/tropism capabilities contribute to their promising clinical therapeutic applications. This review will delve into various examples of EVs serving as biomarkers or nanocarriers for therapeutic cargo in the context of GIDs, highlighting their clinical potential for both functional and structural gastrointestinal conditions. The versatile and advantageous properties of EVs position them as promising candidates for innovative therapeutic strategies in advancing personalized medicine approaches tailored to the gastroenteric tract, addressing both functional and structural GIDs.
Collapse
Affiliation(s)
- Valentina Arrè
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Rita Mastrogiacomo
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy; (R.M.); (M.L.C.)
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Francesco Balestra
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Grazia Serino
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Federica Viti
- Institute of Biophysics—National Research Council (IBF-CNR), Via De Marini 6, 16149 Genova, Italy;
| | - Federica Rizzi
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Maria Lucia Curri
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy; (R.M.); (M.L.C.)
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| | - Nicoletta Depalo
- Institute for Chemical-Physical Processes (IPCF)-CNR SS, Via Orabona 4, 70125 Bari, Italy;
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Bari Research Unit, 70126 Bari, Italy
| | - Maria Principia Scavo
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Italy; (V.A.); (F.B.); (G.S.); (G.G.)
| |
Collapse
|
12
|
Yu Y, Wang J, Guo Q, Luo H. LINC01134: a pivotal oncogene with promising predictive maker and therapeutic target in hepatocellular carcinoma. Front Oncol 2024; 14:1265762. [PMID: 38450182 PMCID: PMC10915649 DOI: 10.3389/fonc.2024.1265762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a leading and fatal malignancy within the gastrointestinal tract. Recent advancements highlight the pivotal role of long non-coding RNAs (lncRNAs) in diverse biological pathways and pathologies, particularly in tumorigenesis. LINC01134, a particular lncRNA, has attracted considerable attention due to its oncogenic potential in hepatoma. Current research underscores LINC01134's potential in augmenting the onset and progression of HCC, with notable implications in drug resistance. This review comprehensively explores the molecular functions and regulatory mechanisms of LINC01134 in HCC, offering a fresh perspective for therapeutic interventions. By delving into LINC01134's multifaceted roles, we aim to foster novel strategies in HCC management.
Collapse
Affiliation(s)
- Yutian Yu
- Department of Spleen and Stomach Diseases, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qingfa Guo
- Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|