1
|
Hong L, Lv Q, Liao H, Xie Z, Shao M, Zhang Y, Chen Y, Pan G, Long M, Zhou Z. Identification a novel syntaxin-like protein from silkworm Bombyx mori pathogen Nosema bombycis and characteristics its membrane fusion function. J Invertebr Pathol 2025; 210:108292. [PMID: 40023480 DOI: 10.1016/j.jip.2025.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Pebrine is a serious disease of the silkworm, Bombyx mori, caused by the first identified microsporidium Nosema bombycis, which is an obligate parasitic single-celled eukaryote. The pathogen can spread both horizontally and vertically, severely affecting sericulture. SNARE proteins mainly mediate the transport of vesicles and membrane fusion, playing a key role in the biological processes. The microsporidium is known to have a well-developed membrane system, especially the polaroplast which occupies most of the volume of mature spores. In order to explore the function of microsporidian SNARE protein, the transcription and subcellular localization characteristics of a novel Syntaxin-like protein (NbSTX-like) from N. bombycis that had a conserved t-SNARE motif were analyzed. In the different development stages of N. bombycis, the NbSTX-like expressed in the nucleus of meronts, then transited to the cytoplasm in the sporonts, gradually gathered at the two ends of the sporoblasts, and finally concentrated at the polaroplast, posterior vacuole and plasma membrane region of mature spores. Interestingly, the rNbSTX-like protein could fuse liposomes to form large vesicular and tubular structures. The formation of sporoplasms was inhibited by the anti-NbSTX-like serum, implying that NbSTX-like protein participated in sporoplasm maturation. These findings laid a foundation for studying the function of SNARE proteins in microsporidia and provided new insights for the prevention and control of sericulture pathogens.
Collapse
Affiliation(s)
- Liuyi Hong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Qing Lv
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Hongjie Liao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Zhengkai Xie
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Maoping Shao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yuanyu Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yuqing Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; College of Life Sciences, Chongqing Normal University, Chongqing 400047, China
| |
Collapse
|
2
|
Jürison M, Pent K, Raimets R, Naudi S, Mänd M, Karise R. Azoxystrobin hides the respiratory failure of low dose sulfoxaflor in bumble bees. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117487. [PMID: 39647372 DOI: 10.1016/j.ecoenv.2024.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Pollinators are exposed to multiple pesticides during their lifetime. Various pesticides are used in agriculture and thus not all mixtures have been tested against each other and little is known about them. In this article, we investigate the impact of sulfoxaflor, a novel sulfoximine insecticide, and azoxystrobin, a widely used strobilurin fungicide, on bumble bee Bombus terrestris worker survival and physiological functions. The dosages used in this experiment are selected from dose response experiments based on LD50 data. Due to variable interactive effects on survival, our findings reveal distinct effects on bumble bee metabolic rate and respiratory patterns induced by sulfoxaflor in combination with azoxystrobin, shedding light on previously unexplored aspects of its physiological impact. Notably, we observed noteworthy differences between oral and contact treatments, emphasizing the importance of considering distinct application methods when evaluating pesticide effects and interactions. Specifically, our results indicate that azoxystrobin can mitigate the impact of sulfoxaflor, suggesting dose-dependent antagonistic interaction between these pesticides in contact exposure. In oral exposure, however, Amistar tended to potentiate the sulfoxaflor effect. This study contributes valuable insights into the multifaceted dynamics of pesticide exposure and interactions, paving the way for a more nuanced understanding of their implications on pollinator health.
Collapse
Affiliation(s)
- Margret Jürison
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.
| | - Kaarel Pent
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Risto Raimets
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Sigmar Naudi
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Marika Mänd
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Reet Karise
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
3
|
Aynalem T, Meng L, Getachew A, Wu J, Yu H, Tan J, Li N, Xu S. A New Isolated Fungus and Its Pathogenicity for Apis mellifera Brood in China. Microorganisms 2024; 12:313. [PMID: 38399717 PMCID: PMC10892447 DOI: 10.3390/microorganisms12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/25/2024] Open
Abstract
In this article, we report the pathogenicity of a new strain of fungus, Rhizopus oryzae to honeybee larvae, isolated from the chalkbrood-diseased mummies of honeybee larvae and pupae collected from apiaries in China. Based on morphological observation and internal transcribed spacer (ITS) region analyses, the isolated pathogenic fungus was identified as R. oryzae. Koch's postulates were performed to determine the cause-and-effect pathogenicity of this isolate fungus. The in vitro pathogenicity of this virulent fungus in honeybees was tested by artificially inoculating worker larvae in the lab. The pathogenicity of this new fungus for honeybee larvae was both conidial-concentration and exposure-time dependent; its highly infectious and virulent effect against the larvae was observed at 1 × 105 conidia/larva in vitro after 96 h of challenge. Using probit regression analysis, the LT50 value against the larvae was 26.8 h at a conidial concentration of 1 × 105 conidia/larva, and the LC50 was 6.2 × 103 conidia/larva. These results indicate that the new isolate of R. oryzae has considerable pathogenicity in honeybee larvae. Additionally, this report suggests that pathogenic phytofungi may harm their associated pollinators. We recommend further research to quantify the levels, mechanisms, and pathways of the pathogenicity of this novel isolated pathogen for honeybee larvae at the colony level.
Collapse
Affiliation(s)
- Tessema Aynalem
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
- College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar P.O. Box 26, Ethiopia
| | - Lifeng Meng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Awraris Getachew
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
- College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar P.O. Box 26, Ethiopia
| | - Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Huimin Yu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Jing Tan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Nannan Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| |
Collapse
|