1
|
Canic T, Lopez J, Ortiz-Vega N, Zhai RG, Syed S. High-resolution, high-throughput analysis of Drosophila geotactic behavior. J Exp Biol 2025; 228:JEB248029. [PMID: 39976165 PMCID: PMC11883285 DOI: 10.1242/jeb.248029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025]
Abstract
Drosophila's innate response to gravity, geotaxis, has been used to assess the impact of aging and disease on motor performance. Despite its rich history, fly geotaxis continues to be largely measured manually and assessed through simplistic metrics, limiting analytic insights into the behavior. Here, we have constructed a fully programmable apparatus and developed a multi-object tracking software capable of following sub-second movements of individual flies, thus allowing quantitative analysis of geotaxis. The apparatus monitors 10 fly cohorts simultaneously, with each cohort consisting of up to 7 flies. The software tracks single flies during the entire run with ∼97% accuracy, yielding detailed climbing curve, speed and movement direction with 1/30 s resolution. Our tracking permits the construction of multi-variable metrics and the detection of transitory movement phenotypes, such as slips and falls. The platform is therefore poised to advance Drosophila geotaxis assay into a comprehensive assessment of locomotor behavior.
Collapse
Affiliation(s)
- Tijana Canic
- Department of Physics, University of Miami, Coral Gables, FL 33146, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan Lopez
- Department of Physics, University of Miami, Coral Gables, FL 33146, USA
| | - Natalie Ortiz-Vega
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - R. Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
2
|
Grzegorczyn S, Dylong I, Dolibog P, Ślęzak A. Diffusion and hydrodynamic instabilities in membrane systems with water solutions of NaCl and ethanol. PLoS One 2024; 19:e0315508. [PMID: 39666726 PMCID: PMC11637282 DOI: 10.1371/journal.pone.0315508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024] Open
Abstract
The characteristic manifestations of instability were observed in the form of voltage pulsations measured between electrodes immersed directly in solutions of membrane system chambers, in different configurations of membrane systems. The reason for this type of voltage pulsations is Rayleigh-Benard type instabilities of near-membrane layers caused by density gradients of solutions in these layers. The time of build-up of the concentration boundary layer, after which hydrodynamic instability appears is one of important parameters of these phenomena. The concentration characteristics of these times, measured for one- and two-membrane systems, are nonlinear. With increasing differences in the density of solutions on the membrane at the initial moment, the times of build-up of concentration boundary layers were reduced. In two-membrane systems containing ternary solutions (water, NaCl, ethanol), ethanol was used to control the initial differences in the density of solutions on the membrane. The times of hydrodynamic instabilities in two-membrane system were symmetrical due to the concentration of ethanol, for which the densities of solutions on both sides of the membrane were the same at the initial moment. This dependence is similar for both configurations of the membrane system and is characterized by two nonlinear curves converging to the concentration of ethanol at which, at the initial moment, the densities of the solutions in the chambers of the two-membrane system are the same. In turn, the steady-state voltages of the two-membrane system as a function of the initial concentration of ethanol in the middle chamber with the same initial NaCl concentration in the middle chamber, are a complex function depending on the membrane arrangement. These voltages are characterized by a transition in the ethanol concentration range, for which, at the initial moment, the densities of the solutions in the chambers of the two-membrane system are comparable.
Collapse
Affiliation(s)
- Sławomir Grzegorczyn
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Iwona Dylong
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Paweł Dolibog
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Andrzej Ślęzak
- Collegium Medicum, Jan Dlugosz University, Częstochowa, Poland
| |
Collapse
|
3
|
Manna OM, Burgio S, Picone D, Carista A, Pitruzzella A, Fucarino A, Bucchieri F. Microgravity and Human Body: Unraveling the Potential Role of Heat-Shock Proteins in Spaceflight and Future Space Missions. BIOLOGY 2024; 13:921. [PMID: 39596876 PMCID: PMC11591694 DOI: 10.3390/biology13110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
In recent years, the increasing number of long-duration space missions has prompted the scientific community to undertake a more comprehensive examination of the impact of microgravity on the human body during spaceflight. This review aims to assess the current knowledge regarding the consequences of exposure to an extreme environment, like microgravity, on the human body, focusing on the role of heat-shock proteins (HSPs). Previous studies have demonstrated that long-term exposure to microgravity during spaceflight can cause various changes in the human body, such as muscle atrophy, changes in muscle fiber composition, cardiovascular function, bone density, and even immune system functions. It has been postulated that heat-shock proteins (HSPs) may play a role in mitigating the harmful effects of microgravity-induced stress. According to past studies, heat-shock proteins (HSPs) are upregulated under simulated microgravity conditions. This upregulation assists in the maintenance of the proper folding and function of other proteins during stressful conditions, thereby safeguarding the physiological systems of organisms from the detrimental effects of microgravity. HSPs could also be used as biomarkers to assess the level of cellular stress in tissues and cells exposed to microgravity. Therefore, modulation of HSPs by drugs and genetic or environmental techniques could prove to be a potential therapeutic strategy to reduce the negative physiological consequences of long-duration spaceflight in astronauts.
Collapse
Affiliation(s)
- Olga Maria Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
| | - Stefano Burgio
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy
| | - Domiziana Picone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Adelaide Carista
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Pitruzzella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Alberto Fucarino
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
4
|
Smith MB, Chen H, Oliver BGG. The Lungs in Space: A Review of Current Knowledge and Methodologies. Cells 2024; 13:1154. [PMID: 38995005 PMCID: PMC11240436 DOI: 10.3390/cells13131154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Space travel presents multiple risks to astronauts such as launch, radiation, spacewalks or extravehicular activities, and microgravity. The lungs are composed of a combination of air, blood, and tissue, making it a complex organ system with interactions between the external and internal environment. Gravity strongly influences the structure of the lung which results in heterogeneity of ventilation and perfusion that becomes uniform in microgravity as shown during parabolic flights, Spacelab, and Skylab experiments. While changes in lung volumes occur in microgravity, efficient gas exchange remains and the lungs perform as they would on Earth; however, little is known about the cellular response to microgravity. In addition to spaceflight and real microgravity, devices, such as clinostats and random positioning machines, are used to simulate microgravity to study cellular responses on the ground. Differential expression of cell adhesion and extracellular matrix molecules has been found in real and simulated microgravity. Immune dysregulation is a known consequence of space travel that includes changes in immune cell morphology, function, and number, which increases susceptibility to infections. However, the majority of in vitro studies do not have a specific respiratory focus. These studies are needed to fully understand the impact of microgravity on the function of the respiratory system in different conditions.
Collapse
Affiliation(s)
- Michaela B. Smith
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia;
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Hui Chen
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Brian G. G. Oliver
- Respiratory Cell and Molecular Biology Group, Woolcock Institute of Medical Research, Macquarie Park, NSW 2113, Australia;
- School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| |
Collapse
|
5
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
6
|
Tran MT, Ho CNQ, Hoang SN, Doan CC, Nguyen MT, Van HD, Ly CN, Le CPM, Hoang HNQ, Nguyen HTM, Truong HT, To QM, Nguyen TTT, Le LT. Morphological Changes of 3T3 Cells under Simulated Microgravity. Cells 2024; 13:344. [PMID: 38391957 PMCID: PMC10887114 DOI: 10.3390/cells13040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Cells are sensitive to changes in gravity, especially the cytoskeletal structures that determine cell morphology. The aim of this study was to assess the effects of simulated microgravity (SMG) on 3T3 cell morphology, as demonstrated by a characterization of the morphology of cells and nuclei, alterations of microfilaments and microtubules, and changes in cycle progression. METHODS 3T3 cells underwent induced SMG for 72 h with Gravite®, while the control group was under 1G. Fluorescent staining was applied to estimate the morphology of cells and nuclei and the cytoskeleton distribution of 3T3 cells. Cell cycle progression was assessed by using the cell cycle app of the Cytell microscope, and Western blot was conducted to determine the expression of the major structural proteins and main cell cycle regulators. RESULTS The results show that SMG led to decreased nuclear intensity, nuclear area, and nuclear shape and increased cell diameter in 3T3 cells. The 3T3 cells in the SMG group appeared to have a flat form and diminished microvillus formation, while cells in the control group displayed an apical shape and abundant microvilli. The 3T3 cells under SMG exhibited microtubule distribution surrounding the nucleus, compared to the perinuclear accumulation in control cells. Irregular forms of the contractile ring and polar spindle were observed in 3T3 cells under SMG. The changes in cytoskeleton structure were caused by alterations in the expression of major cytoskeletal proteins, including β-actin and α-tubulin 3. Moreover, SMG induced 3T3 cells into the arrest phase by reducing main cell cycle related genes, which also affected the formation of cytoskeleton structures such as microfilaments and microtubules. CONCLUSIONS These results reveal that SMG generated morphological changes in 3T3 cells by remodeling the cytoskeleton structure and downregulating major structural proteins and cell cycle regulators.
Collapse
Affiliation(s)
- Minh Thi Tran
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 70000, Vietnam;
| | - Chi Nguyen Quynh Ho
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| | - Son Nghia Hoang
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| | - Chung Chinh Doan
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| | - Minh Thai Nguyen
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
| | - Huy Duc Van
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
| | - Cang Ngoc Ly
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
| | - Cuong Phan Minh Le
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
| | - Huy Nghia Quang Hoang
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| | - Han Thai Minh Nguyen
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Innovation Center, University of New Hampshire, Manchester, NH 03101, USA
| | - Han Thi Truong
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Quan Minh To
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 70000, Vietnam;
| | - Tram Thi Thuy Nguyen
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Faculty of General Biomedical, University of Physical Education and Sport, Ho Chi Minh City 70000, Vietnam
| | - Long Thanh Le
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| |
Collapse
|
7
|
Dontre AJ. Weighing the impact of microgravity on vestibular and visual functions. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:51-61. [PMID: 38245348 DOI: 10.1016/j.lssr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
Numerous technological challenges have been overcome to realize human space exploration. As mission durations gradually lengthen, the next obstacle is a set of physical limitations. Extended exposure to microgravity poses multiple threats to various bodily systems. Two of these systems are of particular concern for the success of future space missions. The vestibular system includes the otolith organs, which are stimulated in gravity but unloaded in microgravity. This impairs perception, posture, and coordination, all of which are relevant to mission success. Similarly, vision is impaired in many space travelers due to possible intracranial pressure changes or fluid shifts in the brain. As humankind prepares for extended missions to Mars and beyond, it is imperative to compensate for these perils in prolonged weightlessness. Possible countermeasures are considered such as exercise regimens, improved nutrition, and artificial gravity achieved with a centrifuge or spacecraft rotation.
Collapse
Affiliation(s)
- Alexander J Dontre
- School of Psychology, Fielding Graduate University, 2020 De La Vina Street, Santa Barbara, CA 93105, USA; Department of Communications, Behavioral, and Natural Sciences, Franklin University, 201 South Grant Avenue, Columbus, OH 43215, USA.
| |
Collapse
|